Huali Xu, Shuaifeng Zhi, Shuzhou Sun, Vishal Patel, Li Liu
{"title":"Deep Learning for Cross-Domain Few-Shot Visual Recognition: A Survey","authors":"Huali Xu, Shuaifeng Zhi, Shuzhou Sun, Vishal Patel, Li Liu","doi":"10.1145/3718362","DOIUrl":null,"url":null,"abstract":"While deep learning excels in computer vision tasks with abundant labeled data, its performance diminishes significantly in scenarios with limited labeled samples. To address this, Few-shot learning (FSL) enables models to perform the target tasks with very few labeled examples by leveraging prior knowledge from related tasks. However, traditional FSL assumes that both the related and target tasks come from the same domain, which is a restrictive assumption in many real-world scenarios where domain differences are common. To overcome this limitation, Cross-domain few-shot learning (CDFSL) has gained attention, as it allows source and target data to come from different domains and label spaces. This paper presents the first comprehensive review of Cross-domain Few-shot Learning (CDFSL), a field that has received less attention compared to traditional FSL due to its unique challenges. We aim to provide both a position paper and a tutorial for researchers, covering key problems, existing methods, and future research directions. The review begins with a formal definition of CDFSL, outlining its core challenges, followed by a systematic analysis of current approaches, organized under a clear taxonomy. Finally, we discuss promising future directions in terms of problem setups, applications, and theoretical advancements.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"10 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3718362","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
While deep learning excels in computer vision tasks with abundant labeled data, its performance diminishes significantly in scenarios with limited labeled samples. To address this, Few-shot learning (FSL) enables models to perform the target tasks with very few labeled examples by leveraging prior knowledge from related tasks. However, traditional FSL assumes that both the related and target tasks come from the same domain, which is a restrictive assumption in many real-world scenarios where domain differences are common. To overcome this limitation, Cross-domain few-shot learning (CDFSL) has gained attention, as it allows source and target data to come from different domains and label spaces. This paper presents the first comprehensive review of Cross-domain Few-shot Learning (CDFSL), a field that has received less attention compared to traditional FSL due to its unique challenges. We aim to provide both a position paper and a tutorial for researchers, covering key problems, existing methods, and future research directions. The review begins with a formal definition of CDFSL, outlining its core challenges, followed by a systematic analysis of current approaches, organized under a clear taxonomy. Finally, we discuss promising future directions in terms of problem setups, applications, and theoretical advancements.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.