Pulsatilla saponin D inhibited the growth of osteosarcoma by regulating the JNK/ATF3 signaling pathway.

Kaipeng Jin, Chengchun Shen, Wei Yu, Jinti Lin, Jian Zhu, Huimin Tao, Bing Liu
{"title":"Pulsatilla saponin D inhibited the growth of osteosarcoma by regulating the JNK/ATF3 signaling pathway.","authors":"Kaipeng Jin, Chengchun Shen, Wei Yu, Jinti Lin, Jian Zhu, Huimin Tao, Bing Liu","doi":"10.1016/j.cbi.2025.111420","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma (OS) is a highly malignant and aggressive bone tumor associated with early lung metastasis and high mortality. Traditional chemotherapy does not effectively improve the efficacy and survival rate of patients with OS. Thus, it is vital to search for alternative therapies. Pulsatilla saponin D (PSD) is a potent bioactive compound that has been widely employed in cancer therapy due to its diverse bioactivities and minimal adverse effects. However, any effect on OS remains unclear. We found that PSD induced apoptosis of OS cells and investigated the mechanisms thereof. In vitro, PSD dose-dependently induced apoptosis and inhibited the viability of HOS and K7M2 cells. Furthermore, PSD significantly suppressed cell migration and invasion, and caused cell cycle arrest at the G0/G1 phase. Mechanistically, PSD upregulated ATF3 and JUN transcription by controlling JNK expression. Compared to cells treated with PSD alone, cells pre-treated with SP600125 (a JNK inhibitor), or in which ATF3 had been knocked down ATF3 with siRNA, did not exhibit PSD-mediated cell apoptosis. In a murine OS model, PSD exhibited a powerful anti-cancer effect and an excellent safety profile. Our data imply that PSD could effectively prevent OS occurrence and progression.</p>","PeriodicalId":93932,"journal":{"name":"Chemico-biological interactions","volume":" ","pages":"111420"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-biological interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbi.2025.111420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Osteosarcoma (OS) is a highly malignant and aggressive bone tumor associated with early lung metastasis and high mortality. Traditional chemotherapy does not effectively improve the efficacy and survival rate of patients with OS. Thus, it is vital to search for alternative therapies. Pulsatilla saponin D (PSD) is a potent bioactive compound that has been widely employed in cancer therapy due to its diverse bioactivities and minimal adverse effects. However, any effect on OS remains unclear. We found that PSD induced apoptosis of OS cells and investigated the mechanisms thereof. In vitro, PSD dose-dependently induced apoptosis and inhibited the viability of HOS and K7M2 cells. Furthermore, PSD significantly suppressed cell migration and invasion, and caused cell cycle arrest at the G0/G1 phase. Mechanistically, PSD upregulated ATF3 and JUN transcription by controlling JNK expression. Compared to cells treated with PSD alone, cells pre-treated with SP600125 (a JNK inhibitor), or in which ATF3 had been knocked down ATF3 with siRNA, did not exhibit PSD-mediated cell apoptosis. In a murine OS model, PSD exhibited a powerful anti-cancer effect and an excellent safety profile. Our data imply that PSD could effectively prevent OS occurrence and progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信