Ischemic Stroke Lesion Core Segmentation from CT Perfusion Scans Using Attention ResUnet Deep Learning.

Omar Ibrahim Alirr
{"title":"Ischemic Stroke Lesion Core Segmentation from CT Perfusion Scans Using Attention ResUnet Deep Learning.","authors":"Omar Ibrahim Alirr","doi":"10.1007/s10278-025-01407-8","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of ischemic stroke lesions is crucial for refining diagnosis, prognosis, and treatment planning. Manual identification is time-consuming and challenging, especially in urgent clinical scenarios. This paper presents an innovative deep learning-based system for automated segmentation of ischemic stroke lesions from Computed Tomography Perfusion (CTP) datasets. This paper introduces a deep learning-based system designed to segment ischemic stroke lesions from Computed Tomography Perfusion (CTP) datasets. The proposed approach integrates Edge Enhancing Diffusion (EED) filtering as a preprocessing step, acting as a form of hard attention to emphasize affected regions. Besides the Attention ResUnet (AttResUnet) architecture with a modified decoder path, incorporating spatial and channel attention mechanisms to capture long-range dependencies. The system was evaluated using the ISLES challenge 2018 dataset with a fivefold cross-validation approach. The proposed framework achieved a noteworthy average Dice Similarity Coefficient (DSC) score of 59%. This performance underscores the effectiveness of combining EED filtering with attention mechanisms in the AttResUnet architecture for accurate stroke lesion segmentation. The fold-wise analysis revealed consistent performance across different data subsets, with slight variations highlighting the model's generalizability. The proposed approach offers a reliable and generalizable tool for automated ischemic stroke lesion segmentation, potentially improving efficiency and accuracy in clinical settings.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01407-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of ischemic stroke lesions is crucial for refining diagnosis, prognosis, and treatment planning. Manual identification is time-consuming and challenging, especially in urgent clinical scenarios. This paper presents an innovative deep learning-based system for automated segmentation of ischemic stroke lesions from Computed Tomography Perfusion (CTP) datasets. This paper introduces a deep learning-based system designed to segment ischemic stroke lesions from Computed Tomography Perfusion (CTP) datasets. The proposed approach integrates Edge Enhancing Diffusion (EED) filtering as a preprocessing step, acting as a form of hard attention to emphasize affected regions. Besides the Attention ResUnet (AttResUnet) architecture with a modified decoder path, incorporating spatial and channel attention mechanisms to capture long-range dependencies. The system was evaluated using the ISLES challenge 2018 dataset with a fivefold cross-validation approach. The proposed framework achieved a noteworthy average Dice Similarity Coefficient (DSC) score of 59%. This performance underscores the effectiveness of combining EED filtering with attention mechanisms in the AttResUnet architecture for accurate stroke lesion segmentation. The fold-wise analysis revealed consistent performance across different data subsets, with slight variations highlighting the model's generalizability. The proposed approach offers a reliable and generalizable tool for automated ischemic stroke lesion segmentation, potentially improving efficiency and accuracy in clinical settings.

基于注意力重构深度学习的CT灌注扫描缺血性脑卒中病灶核心分割。
缺血性脑卒中病变的准确分割对于完善诊断、预后和治疗计划至关重要。人工识别耗时且具有挑战性,特别是在紧急临床情况下。本文提出了一种基于深度学习的创新系统,用于从计算机断层扫描灌注(CTP)数据集中自动分割缺血性脑卒中病变。本文介绍了一种基于深度学习的系统,用于从计算机断层扫描灌注(CTP)数据集中分割缺血性脑卒中病变。该方法将边缘增强扩散(EED)滤波作为预处理步骤,作为强调受影响区域的硬注意形式。此外,注意重单元(AttResUnet)架构与修改的解码器路径,结合空间和通道的注意机制,以捕获远程依赖关系。该系统使用ISLES挑战2018数据集进行评估,采用五倍交叉验证方法。所提出的框架获得了值得注意的平均骰子相似系数(DSC)得分为59%。这一性能强调了在AttResUnet架构中将EED过滤与注意机制结合起来进行准确脑卒中病灶分割的有效性。折叠分析揭示了不同数据子集之间一致的性能,其中细微的变化突出了模型的可泛化性。所提出的方法为缺血性脑卒中病变自动分割提供了一种可靠和通用的工具,有可能提高临床设置的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信