Hybrid Approach to Classifying Histological Subtypes of Non-small Cell Lung Cancer (NSCLC): Combining Radiomics and Deep Learning Features from CT Images.

Geon Oh, Yongha Gi, Jeongshim Lee, Hunjung Kim, Hong-Gyun Wu, Jong Min Park, Eunae Choi, Dongho Shin, Myonggeun Yoon, Boram Lee, Jaeman Son
{"title":"Hybrid Approach to Classifying Histological Subtypes of Non-small Cell Lung Cancer (NSCLC): Combining Radiomics and Deep Learning Features from CT Images.","authors":"Geon Oh, Yongha Gi, Jeongshim Lee, Hunjung Kim, Hong-Gyun Wu, Jong Min Park, Eunae Choi, Dongho Shin, Myonggeun Yoon, Boram Lee, Jaeman Son","doi":"10.1007/s10278-025-01442-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop a hybrid model combining radiomics and deep learning features derived from computed tomography (CT) images to classify histological subtypes of non-small cell lung cancer (NSCLC). We analyzed CT images and radiomics features from 235 patients with NSCLC, including 110 with adenocarcinoma (ADC) and 112 with squamous cell carcinoma (SCC). The dataset was split into a training set (75%) and a test set (25%). External validation was conducted using the NSCLC-Radiomics database, comprising 24 patients each with ADC and SCC. A total of 1409 radiomics and 8192 deep features underwent principal component analysis (PCA) and ℓ2,1-norm minimization for feature reduction and selection. The optimal feature sets for classification included 27 radiomics features, 20 deep features, and 55 combined features (30 deep and 25 radiomics). The average area under the receiver operating characteristic curve (AUC) for radiomics, deep, and combined features were 0.6568, 0.6689, and 0.7209, respectively, across the internal and external test sets. Corresponding average accuracies were 0.6013, 0.6376, and 0.6564. The combined model demonstrated superior performance in classifying NSCLC subtypes, achieving higher AUC and accuracy in both test datasets. These results suggest that the proposed hybrid approach could enhance the accuracy and reliability of NSCLC subtype classification.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01442-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to develop a hybrid model combining radiomics and deep learning features derived from computed tomography (CT) images to classify histological subtypes of non-small cell lung cancer (NSCLC). We analyzed CT images and radiomics features from 235 patients with NSCLC, including 110 with adenocarcinoma (ADC) and 112 with squamous cell carcinoma (SCC). The dataset was split into a training set (75%) and a test set (25%). External validation was conducted using the NSCLC-Radiomics database, comprising 24 patients each with ADC and SCC. A total of 1409 radiomics and 8192 deep features underwent principal component analysis (PCA) and ℓ2,1-norm minimization for feature reduction and selection. The optimal feature sets for classification included 27 radiomics features, 20 deep features, and 55 combined features (30 deep and 25 radiomics). The average area under the receiver operating characteristic curve (AUC) for radiomics, deep, and combined features were 0.6568, 0.6689, and 0.7209, respectively, across the internal and external test sets. Corresponding average accuracies were 0.6013, 0.6376, and 0.6564. The combined model demonstrated superior performance in classifying NSCLC subtypes, achieving higher AUC and accuracy in both test datasets. These results suggest that the proposed hybrid approach could enhance the accuracy and reliability of NSCLC subtype classification.

非小细胞肺癌(NSCLC)组织学亚型分类的混合方法:结合放射组学和CT图像的深度学习特征
本研究旨在建立一种结合放射组学和来自计算机断层扫描(CT)图像的深度学习特征的混合模型,以对非小细胞肺癌(NSCLC)的组织学亚型进行分类。我们分析了235例非小细胞肺癌患者的CT图像和放射组学特征,其中包括110例腺癌(ADC)和112例鳞状细胞癌(SCC)。数据集被分成训练集(75%)和测试集(25%)。外部验证使用NSCLC-Radiomics数据库进行,包括24例ADC和SCC患者。对1409个放射组学特征和8192个深度特征进行主成分分析(PCA)和1,2范数最小化,进行特征的约简和选择。分类的最佳特征集包括27个放射组学特征、20个深度特征和55个组合特征(30个深度特征和25个放射组学特征)。在内部和外部测试集中,放射组学、深度和组合特征的接受者工作特征曲线下的平均面积(AUC)分别为0.6568、0.6689和0.7209。相应的平均精度分别为0.6013、0.6376和0.6564。联合模型在分类NSCLC亚型方面表现出优异的性能,在两个测试数据集中均获得更高的AUC和准确性。这些结果表明,所提出的混合方法可以提高NSCLC亚型分类的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信