Antifragile control systems in neuronal processing: a sensorimotor perspective.

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Cristian Axenie
{"title":"Antifragile control systems in neuronal processing: a sensorimotor perspective.","authors":"Cristian Axenie","doi":"10.1007/s00422-025-01003-7","DOIUrl":null,"url":null,"abstract":"<p><p>The stability-robustness-resilience-adaptiveness continuum in neuronal processing follows a hierarchical structure that explains interactions and information processing among the different time scales. Interestingly, using \"canonical\" neuronal computational circuits, such as Homeostatic Activity Regulation, Winner-Take-All, and Hebbian Temporal Correlation Learning, one can extend the behavior spectrum towards antifragility. Cast already in both probability theory and dynamical systems, antifragility can explain and define the interesting interplay among neural circuits, found, for instance, in sensorimotor control in the face of uncertainty and volatility. This perspective proposes a new framework to analyze and describe closed-loop neuronal processing using principles of antifragility, targeting sensorimotor control. Our objective is two-fold. First, we introduce antifragile control as a conceptual framework to quantify closed-loop neuronal network behaviors that gain from uncertainty and volatility. Second, we introduce neuronal network design principles, opening the path to neuromorphic implementations and transfer to technical systems.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":"119 2-3","pages":"7"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-025-01003-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

The stability-robustness-resilience-adaptiveness continuum in neuronal processing follows a hierarchical structure that explains interactions and information processing among the different time scales. Interestingly, using "canonical" neuronal computational circuits, such as Homeostatic Activity Regulation, Winner-Take-All, and Hebbian Temporal Correlation Learning, one can extend the behavior spectrum towards antifragility. Cast already in both probability theory and dynamical systems, antifragility can explain and define the interesting interplay among neural circuits, found, for instance, in sensorimotor control in the face of uncertainty and volatility. This perspective proposes a new framework to analyze and describe closed-loop neuronal processing using principles of antifragility, targeting sensorimotor control. Our objective is two-fold. First, we introduce antifragile control as a conceptual framework to quantify closed-loop neuronal network behaviors that gain from uncertainty and volatility. Second, we introduce neuronal network design principles, opening the path to neuromorphic implementations and transfer to technical systems.

神经处理中的反脆弱控制系统:感觉运动视角。
神经元处理中的稳定性-鲁棒性-弹性-适应性连续体遵循层次结构,解释了不同时间尺度之间的相互作用和信息处理。有趣的是,使用“规范”的神经元计算电路,如稳态活动调节、赢者通吃和Hebbian时间相关学习,人们可以将行为范围扩展到反脆弱性。在概率论和动力系统中,反脆弱性可以解释和定义神经回路之间有趣的相互作用,例如,在面对不确定性和波动性的感觉运动控制中发现。这一观点提出了一个新的框架来分析和描述闭环神经元处理使用反脆弱性的原则,目标是感觉运动控制。我们的目标是双重的。首先,我们引入反脆弱控制作为一个概念框架来量化从不确定性和波动性中获得的闭环神经网络行为。其次,我们介绍了神经网络设计原理,为神经形态的实现和技术系统的转移开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信