Harnessing the synergy of statistics and deep learning for BCI competition 4 dataset 4: a novel approach.

Q1 Computer Science
Gauttam Jangir, Nisheeth Joshi, Gaurav Purohit
{"title":"Harnessing the synergy of statistics and deep learning for BCI competition 4 dataset 4: a novel approach.","authors":"Gauttam Jangir, Nisheeth Joshi, Gaurav Purohit","doi":"10.1186/s40708-025-00250-5","DOIUrl":null,"url":null,"abstract":"<p><p>Human brain signal processing and finger's movement coordination is a complex mechanism. In this mechanism finger's movement is mostly performed for every day's task. It is well known that to capture such movement EEG or ECoG signals are used. In this order to find the patterns from these signals is important. The BCI competition 4 dataset 4 is one such standard dataset of ECoG signals for individual finger movement provided by University of Washington, USA. In this work, this dataset is, statistically analyzed to understand the nature of data and outliers in it. Effectiveness of pre-processing algorithm is then visualized. The cleaned dataset has dual polarity and gaussian distribution nature which makes Tanh activation function suitable for the neural network BC4D4 model. BC4D4 uses Convolutional neural network for feature extraction, dense neural network for pattern identification and incorporating dropout & regularization making the proposed model more resilient. Our model outperforms the state of the art work on the dataset 4 achieving 0.85 correlation value that is 1.85X (Winner of BCI competition 4, 2012) & 1.25X (Finger Flex model, 2022).</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00250-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Human brain signal processing and finger's movement coordination is a complex mechanism. In this mechanism finger's movement is mostly performed for every day's task. It is well known that to capture such movement EEG or ECoG signals are used. In this order to find the patterns from these signals is important. The BCI competition 4 dataset 4 is one such standard dataset of ECoG signals for individual finger movement provided by University of Washington, USA. In this work, this dataset is, statistically analyzed to understand the nature of data and outliers in it. Effectiveness of pre-processing algorithm is then visualized. The cleaned dataset has dual polarity and gaussian distribution nature which makes Tanh activation function suitable for the neural network BC4D4 model. BC4D4 uses Convolutional neural network for feature extraction, dense neural network for pattern identification and incorporating dropout & regularization making the proposed model more resilient. Our model outperforms the state of the art work on the dataset 4 achieving 0.85 correlation value that is 1.85X (Winner of BCI competition 4, 2012) & 1.25X (Finger Flex model, 2022).

人脑信号处理和手指运动协调是一个复杂的机制。在这一机制中,手指运动主要是为了完成日常任务。众所周知,捕捉这种运动需要使用脑电图或心电图信号。因此,从这些信号中找出规律非常重要。BCI 竞赛 4 数据集 4 就是由美国华盛顿大学提供的单个手指运动 ECoG 信号标准数据集。在这项工作中,将对该数据集进行统计分析,以了解数据的性质和异常值。然后对预处理算法的效果进行可视化。清理后的数据集具有双极性和高斯分布的性质,这使得 Tanh 激活函数适用于神经网络 BC4D4 模型。BC4D4 使用卷积神经网络进行特征提取,使用密集神经网络进行模式识别,并结合了 dropout 和正则化,使所提出的模型更具弹性。我们的模型在数据集 4 上的相关性达到了 0.85 倍(2012 年第 4 届生物识别竞赛优胜者)和 1.25 倍(2022 年 Finger Flex 模型),超过了目前最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信