Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Christel Sirocchi, Martin Urschler, Bastian Pfeifer
{"title":"Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping.","authors":"Christel Sirocchi, Martin Urschler, Bastian Pfeifer","doi":"10.1186/s13040-025-00430-3","DOIUrl":null,"url":null,"abstract":"<p><p>Explainable and interpretable machine learning has emerged as essential in leveraging artificial intelligence within high-stakes domains such as healthcare to ensure transparency and trustworthiness. Feature importance analysis plays a crucial role in improving model interpretability by pinpointing the most relevant input features, particularly in disease subtyping applications, aimed at stratifying patients based on a small set of signature genes and biomarkers. While clustering methods, including unsupervised random forests, have demonstrated good performance, approaches for evaluating feature contributions in an unsupervised regime are notably scarce. To address this gap, we introduce a novel methodology to enhance the interpretability of unsupervised random forests by elucidating feature contributions through the construction of feature graphs, both over the entire dataset and individual clusters, that leverage parent-child node splits within the trees. Feature selection strategies to derive effective feature combinations from these graphs are presented and extensively evaluated on synthetic and benchmark datasets against state-of-the-art methods, standing out for performance, computational efficiency, reliability, versatility and ability to provide cluster-specific insights. In a disease subtyping application, clustering kidney cancer gene expression data over a feature subset selected with our approach reveals three patient groups with different survival outcomes. Cluster-specific analysis identifies distinctive feature contributions and interactions, essential for devising targeted interventions, conducting personalised risk assessments, and enhancing our understanding of the underlying molecular complexities.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"15"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00430-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Explainable and interpretable machine learning has emerged as essential in leveraging artificial intelligence within high-stakes domains such as healthcare to ensure transparency and trustworthiness. Feature importance analysis plays a crucial role in improving model interpretability by pinpointing the most relevant input features, particularly in disease subtyping applications, aimed at stratifying patients based on a small set of signature genes and biomarkers. While clustering methods, including unsupervised random forests, have demonstrated good performance, approaches for evaluating feature contributions in an unsupervised regime are notably scarce. To address this gap, we introduce a novel methodology to enhance the interpretability of unsupervised random forests by elucidating feature contributions through the construction of feature graphs, both over the entire dataset and individual clusters, that leverage parent-child node splits within the trees. Feature selection strategies to derive effective feature combinations from these graphs are presented and extensively evaluated on synthetic and benchmark datasets against state-of-the-art methods, standing out for performance, computational efficiency, reliability, versatility and ability to provide cluster-specific insights. In a disease subtyping application, clustering kidney cancer gene expression data over a feature subset selected with our approach reveals three patient groups with different survival outcomes. Cluster-specific analysis identifies distinctive feature contributions and interactions, essential for devising targeted interventions, conducting personalised risk assessments, and enhancing our understanding of the underlying molecular complexities.

可解释无监督树集成的特征图:中心性、相互作用和疾病亚型分型中的应用。
可解释和可解释的机器学习已经成为在医疗保健等高风险领域利用人工智能以确保透明度和可信度的关键。特征重要性分析通过精确定位最相关的输入特征,在提高模型可解释性方面发挥着至关重要的作用,特别是在疾病亚型应用中,旨在根据一小组特征基因和生物标志物对患者进行分层。虽然聚类方法,包括无监督随机森林,已经证明了良好的性能,但在无监督状态下评估特征贡献的方法非常少。为了解决这一差距,我们引入了一种新的方法,通过在整个数据集和单个集群上构建特征图来阐明特征贡献,从而增强无监督随机森林的可解释性,该方法利用树内的父子节点分裂。本文介绍了从这些图中获得有效特征组合的特征选择策略,并针对最先进的方法在合成和基准数据集上进行了广泛的评估,突出了性能、计算效率、可靠性、通用性和提供特定于集群的见解的能力。在疾病亚型应用中,通过我们的方法选择的特征子集聚类肾癌基因表达数据揭示了具有不同生存结果的三组患者。聚类特异性分析确定了独特的特征贡献和相互作用,这对于设计有针对性的干预措施、进行个性化风险评估以及增强我们对潜在分子复杂性的理解至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信