{"title":"tRNA-derived RNAs that form tetramolecular assemblies.","authors":"Prakash Kharel","doi":"10.1016/bs.mie.2024.11.014","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer RNA (tRNA)-derived small RNAs (tDRs) are emerging as a novel class of regulatory molecules with significant implications in gene expression and cellular processes. These tDRs are generated through precise cleavage of precursor or mature tRNAs and can function in a sequence dependent manner or structure dependent manner. Recent studies have uncovered a unique subset of tDRs that can form tetramolecular assemblies, adding a new layer of complexity to their functional repertoire. Tetramolecular tDRs exhibit remarkable stability and functional diversity, influencing processes such as translation regulation, stress response, and cellular signaling. The assembly of these tDRs into tetramers is facilitated by guanine-rich sequence motifs which promote intermolecular interactions essential for their structure and biological activity. Understanding the formation, structural dynamics, and functional roles of tetramolecular tDRs offers new insights into tDR-mediated gene regulation and the potential development of RNA-based therapeutic strategies. This article aims to discuss a set of biochemical, biophysical, and reporter assay-based techniques that can be used to characterize G-quadruplex structures formed by tDRs.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"47-63"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Transfer RNA (tRNA)-derived small RNAs (tDRs) are emerging as a novel class of regulatory molecules with significant implications in gene expression and cellular processes. These tDRs are generated through precise cleavage of precursor or mature tRNAs and can function in a sequence dependent manner or structure dependent manner. Recent studies have uncovered a unique subset of tDRs that can form tetramolecular assemblies, adding a new layer of complexity to their functional repertoire. Tetramolecular tDRs exhibit remarkable stability and functional diversity, influencing processes such as translation regulation, stress response, and cellular signaling. The assembly of these tDRs into tetramers is facilitated by guanine-rich sequence motifs which promote intermolecular interactions essential for their structure and biological activity. Understanding the formation, structural dynamics, and functional roles of tetramolecular tDRs offers new insights into tDR-mediated gene regulation and the potential development of RNA-based therapeutic strategies. This article aims to discuss a set of biochemical, biophysical, and reporter assay-based techniques that can be used to characterize G-quadruplex structures formed by tDRs.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.