Self-quenched tRNA reporters for imaging tRNA-derived RNA biogenesis.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2024-12-03 DOI:10.1016/bs.mie.2024.11.025
Guoping Li, Saumya Das
{"title":"Self-quenched tRNA reporters for imaging tRNA-derived RNA biogenesis.","authors":"Guoping Li, Saumya Das","doi":"10.1016/bs.mie.2024.11.025","DOIUrl":null,"url":null,"abstract":"<p><p>tRNA-derived small RNAs (tDRs) are an emerging class of small non-coding RNAs that play crucial roles in various cellular processes. However, there is a paucity of data on their sub-cellular localization due to a lack of tools and reagents to image tDRs. Imaging tDRs remains challenging due to the similar sequences between tDR and its parent tRNA. Here, we describe an innovative tool for studying the formation and localization of tDRs in various biological processes using a self-quenched tDR biogenesis reporter. This method utilizes a full-length tRNA molecule conjugated with both fluorescence and quencher groups at 5'- and 3'- ends. In its intact state, the fluorescence is quenched. Upon cleavage by specific ribonucleases and strand separation, the fluorescence becomes detectable, allowing real-time imaging of tDR biogenesis. This protocol details the design, synthesis, and application of this reporter, including transfection procedures and imaging techniques. The method offers a powerful approach for investigating tDR dynamics in living cells, providing insights into their roles in cellular processes and stress responses.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"324-335"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

tRNA-derived small RNAs (tDRs) are an emerging class of small non-coding RNAs that play crucial roles in various cellular processes. However, there is a paucity of data on their sub-cellular localization due to a lack of tools and reagents to image tDRs. Imaging tDRs remains challenging due to the similar sequences between tDR and its parent tRNA. Here, we describe an innovative tool for studying the formation and localization of tDRs in various biological processes using a self-quenched tDR biogenesis reporter. This method utilizes a full-length tRNA molecule conjugated with both fluorescence and quencher groups at 5'- and 3'- ends. In its intact state, the fluorescence is quenched. Upon cleavage by specific ribonucleases and strand separation, the fluorescence becomes detectable, allowing real-time imaging of tDR biogenesis. This protocol details the design, synthesis, and application of this reporter, including transfection procedures and imaging techniques. The method offers a powerful approach for investigating tDR dynamics in living cells, providing insights into their roles in cellular processes and stress responses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信