{"title":"Assay for ribosome stimulation of angiogenin nuclease activity.","authors":"Emily Sholi, Anna B Loveland, Andrei A Korostelev","doi":"10.1016/bs.mie.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>Angiogenin (RNase 5) is an unusual member of the RNase A family with very weak RNase activity and a preference for tRNA. The tRNAs cleaved by angiogenin are thought to have a variety of roles in cellular processes including translation reprogramming, apoptosis, angiogenesis, and neuroprotection. We recently demonstrated that angiogenin is potently activated by the cytoplasmic 80S ribosome. Angiogenin's binding to the ribosome rearranges the C-terminus of the protein, opening the active site for the cleavage of tRNA delivered to the ribosomal A site which angiogenin occupies. Here, we describe the biochemical procedure to test angiogenin's activation by the ribosome using the assay termed the Ribosome Stimulated Angiogenin Nuclease Assay (RiSANA). RiSANA can be used to test the activity of wild-type or mutant angiogenin, or other RNases, against different tRNAs and with different ribosome complexes. For example, given that angiogenin has been implicated in anti-microbial activity, we tested the ability of bacterial 70S ribosomes to stimulate angiogenin activity and found that the E. coli ribosome does not stimulate angiogenin. We also assayed whether angiogenin's closest homolog, RNase 4, could be stimulated by the ribosome, but unlike angiogenin this enzyme was not further activated by the ribosome. The RiSANA assay promises to reveal new aspects of angiogenin mechanism and may aid in the development of new diagnostic tools and therapeutics.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"381-404"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Angiogenin (RNase 5) is an unusual member of the RNase A family with very weak RNase activity and a preference for tRNA. The tRNAs cleaved by angiogenin are thought to have a variety of roles in cellular processes including translation reprogramming, apoptosis, angiogenesis, and neuroprotection. We recently demonstrated that angiogenin is potently activated by the cytoplasmic 80S ribosome. Angiogenin's binding to the ribosome rearranges the C-terminus of the protein, opening the active site for the cleavage of tRNA delivered to the ribosomal A site which angiogenin occupies. Here, we describe the biochemical procedure to test angiogenin's activation by the ribosome using the assay termed the Ribosome Stimulated Angiogenin Nuclease Assay (RiSANA). RiSANA can be used to test the activity of wild-type or mutant angiogenin, or other RNases, against different tRNAs and with different ribosome complexes. For example, given that angiogenin has been implicated in anti-microbial activity, we tested the ability of bacterial 70S ribosomes to stimulate angiogenin activity and found that the E. coli ribosome does not stimulate angiogenin. We also assayed whether angiogenin's closest homolog, RNase 4, could be stimulated by the ribosome, but unlike angiogenin this enzyme was not further activated by the ribosome. The RiSANA assay promises to reveal new aspects of angiogenin mechanism and may aid in the development of new diagnostic tools and therapeutics.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.