Functional analysis of tRNA-derived small translational regulation.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI:10.1016/bs.mie.2024.11.017
Dongjin Kim, Hak Kyun Kim, Mark A Kay
{"title":"Functional analysis of tRNA-derived small translational regulation.","authors":"Dongjin Kim, Hak Kyun Kim, Mark A Kay","doi":"10.1016/bs.mie.2024.11.017","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer RNAs (tRNAs) are short non-coding RNA molecules that play a crucial role in protein synthesis by carrying amino acids to ribosomes during translation. tRNAs are highly conserved and abundant across species, with each type categorized based on its anticodon sequence. Although traditionally viewed as essential for protein synthesis, tRNAs have been found to have additional roles in cell proliferation, tumor metastasis, and neuronal homeostasis. In addition, tRNAs are cleaved by ribonucleases to produce smaller fragments. These fragments have previously been referred to as tRNA fragments (tRF RNAs) or tRNA-derived small RNAs (tsRNAs). More recently a nomenclature has been but forward for all tRNA derived RNAs referred to as tDRs. We will use tsRNA and tDR interterchangeably. The tDRs are processed at specific sites in tRNAs and can be differentially expressed in various tissues and diseases, indicating their potential as unique non-coding RNAs with specific functions. In a previous study, we identified a 3'tDR, which can regulate the translation of a target mRNA by altering its secondary structure. This chapter provides a detailed protocol to analyze the tDR-mediated translational regulation based on several molecular methods.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"336-355"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Transfer RNAs (tRNAs) are short non-coding RNA molecules that play a crucial role in protein synthesis by carrying amino acids to ribosomes during translation. tRNAs are highly conserved and abundant across species, with each type categorized based on its anticodon sequence. Although traditionally viewed as essential for protein synthesis, tRNAs have been found to have additional roles in cell proliferation, tumor metastasis, and neuronal homeostasis. In addition, tRNAs are cleaved by ribonucleases to produce smaller fragments. These fragments have previously been referred to as tRNA fragments (tRF RNAs) or tRNA-derived small RNAs (tsRNAs). More recently a nomenclature has been but forward for all tRNA derived RNAs referred to as tDRs. We will use tsRNA and tDR interterchangeably. The tDRs are processed at specific sites in tRNAs and can be differentially expressed in various tissues and diseases, indicating their potential as unique non-coding RNAs with specific functions. In a previous study, we identified a 3'tDR, which can regulate the translation of a target mRNA by altering its secondary structure. This chapter provides a detailed protocol to analyze the tDR-mediated translational regulation based on several molecular methods.

trna衍生小翻译调控的功能分析。
转运RNA (tRNAs)是一种短的非编码RNA分子,在蛋白质合成中起着至关重要的作用,在翻译过程中将氨基酸携带到核糖体。trna在物种中高度保守且丰富,每种类型都根据其反密码子序列进行分类。尽管传统上认为trna对蛋白质合成至关重要,但人们发现trna在细胞增殖、肿瘤转移和神经元稳态中具有额外的作用。此外,trna被核糖核酸酶切割以产生更小的片段。这些片段以前被称为tRNA片段(tRF rna)或tRNA衍生的小rna (tsrna)。最近,所有tRNA衍生的rna都被命名为tdr。我们将交替使用tsRNA和tDR。tdr在trna中的特定位点进行加工,并可在各种组织和疾病中差异表达,这表明它们可能是具有特定功能的独特非编码rna。在之前的研究中,我们发现了一个3'tDR,它可以通过改变目标mRNA的二级结构来调节其翻译。本章提供了基于几种分子方法分析tdr介导的翻译调控的详细方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信