Potential Ameliorating Effects of Fluvoxamine in a Rat Model of Endotoxin-Induced Neuroinflammation: Molecular Aspects Through SIRT-1/GPX-4 and HMGB-1 Signaling.
Muhammet Yusuf Tepebaşı, Halil Aşcı, Pınar Aslan Koşar, Emine Nur Dinçer, Esma Selçuk, Öznur Kolay, İbrahim Hüseynov
{"title":"Potential Ameliorating Effects of Fluvoxamine in a Rat Model of Endotoxin-Induced Neuroinflammation: Molecular Aspects Through SIRT-1/GPX-4 and HMGB-1 Signaling.","authors":"Muhammet Yusuf Tepebaşı, Halil Aşcı, Pınar Aslan Koşar, Emine Nur Dinçer, Esma Selçuk, Öznur Kolay, İbrahim Hüseynov","doi":"10.1007/s12035-025-04764-1","DOIUrl":null,"url":null,"abstract":"<p><p>Research on the tissue-protective effects of fluvoxamine (FLV), a selective serotonin reuptake inhibitor, rapidly expands. This study explores FLV's potential to protect against lipopolysaccharide (LPS)-induced neuroinflammation, a key factor in systemic inflammation-related neuronal damage. Four equal groups of thirty-two female Wistar Albino rats were created: FLV, LPS-FLV (50 mg/kg intraperitoneal), LPS (5 mg/kg intraperitoneal), and control. Both drugs were given in one dose on the same day. Tissues from the brain cortex, cerebellum, and hippocampus were taken for histopathology, immunohistochemistry, biochemistry, and genetic analysis. In the LPS group, histological examinations revealed hyperemia, edema, mild degeneration, neuronal death, and modest gliosis. Additionally, while apelin and total antioxidant status levels were reduced, greater levels of oxidative stress index, glial fibrillary acidic protein (GFAP), mammalian target of rapamycin (mTOR), and total oxidant status were noted. FLV treatment reversed all these findings. Genetic analyses revealed that LPS decreased sirtuin-1 (SIRT-1) and glutathione peroxidase 4 (GPX-4) while increasing high mobility group box protein 1 (HMGB-1). FLV treatment reversed all these parameters, and a significant result was obtained only with GPX-4. In this study, FLV treatment was shown to have anti-inflammatory and neuroprotective effects through various mechanisms on the brain cortex, cerebellum, and hippocampus tissues in addition to its antidepressant effects.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7892-7902"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04764-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Research on the tissue-protective effects of fluvoxamine (FLV), a selective serotonin reuptake inhibitor, rapidly expands. This study explores FLV's potential to protect against lipopolysaccharide (LPS)-induced neuroinflammation, a key factor in systemic inflammation-related neuronal damage. Four equal groups of thirty-two female Wistar Albino rats were created: FLV, LPS-FLV (50 mg/kg intraperitoneal), LPS (5 mg/kg intraperitoneal), and control. Both drugs were given in one dose on the same day. Tissues from the brain cortex, cerebellum, and hippocampus were taken for histopathology, immunohistochemistry, biochemistry, and genetic analysis. In the LPS group, histological examinations revealed hyperemia, edema, mild degeneration, neuronal death, and modest gliosis. Additionally, while apelin and total antioxidant status levels were reduced, greater levels of oxidative stress index, glial fibrillary acidic protein (GFAP), mammalian target of rapamycin (mTOR), and total oxidant status were noted. FLV treatment reversed all these findings. Genetic analyses revealed that LPS decreased sirtuin-1 (SIRT-1) and glutathione peroxidase 4 (GPX-4) while increasing high mobility group box protein 1 (HMGB-1). FLV treatment reversed all these parameters, and a significant result was obtained only with GPX-4. In this study, FLV treatment was shown to have anti-inflammatory and neuroprotective effects through various mechanisms on the brain cortex, cerebellum, and hippocampus tissues in addition to its antidepressant effects.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.