{"title":"Autophagy Induction by Mangiferin Protects Auditory Hair Cells from Ototoxicity.","authors":"Gyeong Min Lim, Gwang-Won Cho, Chul Ho Jang","doi":"10.1007/s12035-025-04751-6","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress is a major cause of auditory hair cell degeneration and hearing impairment.Reducing intracellular reactive oxygen species (ROS) levels may help preserve auditory hair cell function. In this study, we explored the otoprotective properties of mangiferin, a xanthonoid extracted from mango leaves, bark, and fruit peels. Our findings indicate that mangiferin protects HEI-OC1 cells against oxidative stress induced by H<sub>2</sub>O<sub>2</sub> through modulation of autophagic mechanisms and elimination of ROS. The modulation of proteins linked to autophagy and apoptosis, such as LC3 conversion and SQSTM1 degradation, confirmed this protective effect. Furthermore, auditory brainstem response test and scanning electron microscopy findings indicated that mangiferin effectively mitigates hair cell degeneration in the organ of Corti in guinea pigs subjected to ototoxicity induced by kanamycin and furosemide. Immunohistochemical analysis also provided insights into the effects of mangiferin on ribbon synapses within the cochlea of rats. Both in vitro and in vivo studies demonstrated that mangiferin exerts protective effect against ototoxicity by inducing autophagy.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7903-7914"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04751-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress is a major cause of auditory hair cell degeneration and hearing impairment.Reducing intracellular reactive oxygen species (ROS) levels may help preserve auditory hair cell function. In this study, we explored the otoprotective properties of mangiferin, a xanthonoid extracted from mango leaves, bark, and fruit peels. Our findings indicate that mangiferin protects HEI-OC1 cells against oxidative stress induced by H2O2 through modulation of autophagic mechanisms and elimination of ROS. The modulation of proteins linked to autophagy and apoptosis, such as LC3 conversion and SQSTM1 degradation, confirmed this protective effect. Furthermore, auditory brainstem response test and scanning electron microscopy findings indicated that mangiferin effectively mitigates hair cell degeneration in the organ of Corti in guinea pigs subjected to ototoxicity induced by kanamycin and furosemide. Immunohistochemical analysis also provided insights into the effects of mangiferin on ribbon synapses within the cochlea of rats. Both in vitro and in vivo studies demonstrated that mangiferin exerts protective effect against ototoxicity by inducing autophagy.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.