This work describes a single institution experience of commissioning a real-time target tracking and beam control system, known as comprehensive motion management, for a 1.5 T Elekta MR-Linac.
Anatomical tracking and radiation beam control were tested using the MRI4D Quasar motion phantom. Multiple respiratory breathing traces were modeled across a range of realistic regular and irregular breathing patterns ranging between 10 and 18 breaths per minute. Each of the breathing traces was used to characterize the anatomical position monitoring (APM) accuracy, and beam latency, and to quantify the dosimetric impact of both parameters during a respiratory-gated delivery using EBT3 film dosimetry. Additional commissioning tasks were performed to verify the dosimetric constancy during beam gating and to expand our existing quality assurance program.
It was determined that APM correctly predicted the 3D position of a dynamically moving tracking target to within 1.5 mm for 95% of the imaging frames with no deviation exceeding 2 mm. Among the breathing traces investigated, the mean latency ranged between −21.7 and 7.9 ms with 95% of all observed latencies within 188.3 ms. No discernable differences were observed in the relative profiles or cumulative output for a gated beam relative to an ungated beam with minimal dosimetric impact observed due to system latency. Measured dose profiles for all gated scenarios retained a gamma pass rate of 97% or higher for a 3%/2 mm criteria relative to a theoretical gated dose profile without latency or tracking inaccuracies.
MRI-guided target tracking and automated beam delivery control were successfully commissioned for the Elekta Unity MR-Linac. These gating features were shown to be highly accurate with an effectively small beam latency for a range of regular and irregular respiratory breathing traces.