You Zhai , Guanzhang Li , Changqing Pan , Mingchen Yu , Huimin Hu , Di Wang , Zhongfang Shi , Tao Jiang , Wei Zhang
{"title":"The development and potent antitumor efficacy of CD44/CD133 dual-targeting IL7Rα-armored CAR-T cells against glioblastoma","authors":"You Zhai , Guanzhang Li , Changqing Pan , Mingchen Yu , Huimin Hu , Di Wang , Zhongfang Shi , Tao Jiang , Wei Zhang","doi":"10.1016/j.canlet.2025.217541","DOIUrl":null,"url":null,"abstract":"<div><div>Tumor heterogeneity and an immunosuppressive microenvironment pose significant challenges for immunotherapy against solid tumors, particularly glioblastoma multiforme (GBM). Recent studies have highlighted the crucial role of glioma stem cells (GSCs) in tumor recurrence and therapeutic resistance. In this context, we developed a tandem chimeric antigen receptor (CAR)-T cell targeting CD44 and CD133 (PROM1), containing a truncated IL-7 receptor alpha intracellular domain (Δ7R) between the CD28 costimulatory receptor and the CD3ζ signaling chain (Tanζ-T28-Δ7R). Our target identification and validation were carried out using GSCs, samples from GBM patients, and the corresponding sequencing data. The antitumor efficacy of CAR-T cells was evaluated in patient-derived GSCs, intracranial xenograft models, patient-derived xenograft models, and glioblastoma organoids (GBOs). Single-cell RNA sequencing and mass cytometry were used to determine the immune phenotypes of CAR-T cells. We showed that locoregionally administered Tanζ-T28-Δ7R CAR-T cells induced long-term tumor regression with the desired safety outcomes. Patient-derived autologous Tanζ-T28-Δ7R CAR-T cells showed robust antitumor activity against GBOs. Our pre-clinical data has demonstrated the translational potential of Tanζ-T28-Δ7R CAR-T cell against GBM.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"614 ","pages":"Article 217541"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525001053","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor heterogeneity and an immunosuppressive microenvironment pose significant challenges for immunotherapy against solid tumors, particularly glioblastoma multiforme (GBM). Recent studies have highlighted the crucial role of glioma stem cells (GSCs) in tumor recurrence and therapeutic resistance. In this context, we developed a tandem chimeric antigen receptor (CAR)-T cell targeting CD44 and CD133 (PROM1), containing a truncated IL-7 receptor alpha intracellular domain (Δ7R) between the CD28 costimulatory receptor and the CD3ζ signaling chain (Tanζ-T28-Δ7R). Our target identification and validation were carried out using GSCs, samples from GBM patients, and the corresponding sequencing data. The antitumor efficacy of CAR-T cells was evaluated in patient-derived GSCs, intracranial xenograft models, patient-derived xenograft models, and glioblastoma organoids (GBOs). Single-cell RNA sequencing and mass cytometry were used to determine the immune phenotypes of CAR-T cells. We showed that locoregionally administered Tanζ-T28-Δ7R CAR-T cells induced long-term tumor regression with the desired safety outcomes. Patient-derived autologous Tanζ-T28-Δ7R CAR-T cells showed robust antitumor activity against GBOs. Our pre-clinical data has demonstrated the translational potential of Tanζ-T28-Δ7R CAR-T cell against GBM.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.