Yumei Huang , Anchen Qiu , Yimei Meng , Ming Lin , Yunhong Xu , Liu Yang
{"title":"RSK2-mediated phosphorylation and degradation of UBE2O inhibits hepatocellular carcinoma growth and resistance to radiotherapy","authors":"Yumei Huang , Anchen Qiu , Yimei Meng , Ming Lin , Yunhong Xu , Liu Yang","doi":"10.1016/j.canlet.2025.217558","DOIUrl":null,"url":null,"abstract":"<div><div>Radioresistance poses the main challenge in radiation therapy (RT) for liver cancer, with the DNA Damage response (DDR) being a crucial component of this resistance. Ubiquitin-conjugating enzyme E2O (UBE2O) has been implicated in regulating tumor proliferation, cholesterol metabolism, and drug resistance. However, the role of the ubiquitin-conjugating enzyme E2O (UBE2O) in DDR of liver cancer remains to be fully explored. We discovered an elevated expression of UBE2O within liver cancer tissues, which was notably associated with unfavorable prognoses in hepatocellular carcinoma (HCC) patients. Furthermore, we found that the suppression of UBE2O can effectively reduce the growth and resistance to radiotherapy of HCC cells <em>in vitro</em> and <em>in vivo</em>. Moreover, p90 ribosomal S6 kinase2 (RSK2) was confirmed as a novel interacting kinase of UBE2O, which mediated the phosphorylation and degradation of UBE2O at the Thr838 site. RSK2 inhibition promotes tumor proliferation and resistance to radiotherapy of HCC cells <em>in vitro</em> and <em>in vivo</em>, and these effects are abrogated upon UBE2O knockdown. Collectively, our work revealed that UBE2O promotes tumor progression and resistance to radiotherapy, which was negatively regulated by RSK2 for phosphorylation and degradation, indicating that the RSK2/UBE2O axis provides a potential radiosensitization target for HCC patients.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"615 ","pages":"Article 217558"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525001223","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radioresistance poses the main challenge in radiation therapy (RT) for liver cancer, with the DNA Damage response (DDR) being a crucial component of this resistance. Ubiquitin-conjugating enzyme E2O (UBE2O) has been implicated in regulating tumor proliferation, cholesterol metabolism, and drug resistance. However, the role of the ubiquitin-conjugating enzyme E2O (UBE2O) in DDR of liver cancer remains to be fully explored. We discovered an elevated expression of UBE2O within liver cancer tissues, which was notably associated with unfavorable prognoses in hepatocellular carcinoma (HCC) patients. Furthermore, we found that the suppression of UBE2O can effectively reduce the growth and resistance to radiotherapy of HCC cells in vitro and in vivo. Moreover, p90 ribosomal S6 kinase2 (RSK2) was confirmed as a novel interacting kinase of UBE2O, which mediated the phosphorylation and degradation of UBE2O at the Thr838 site. RSK2 inhibition promotes tumor proliferation and resistance to radiotherapy of HCC cells in vitro and in vivo, and these effects are abrogated upon UBE2O knockdown. Collectively, our work revealed that UBE2O promotes tumor progression and resistance to radiotherapy, which was negatively regulated by RSK2 for phosphorylation and degradation, indicating that the RSK2/UBE2O axis provides a potential radiosensitization target for HCC patients.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.