Wolfium Bonds with π Systems as Electron Donors.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Heting Wang, Qingzhong Li, Shaoli Liu, Sean A C McDowell
{"title":"Wolfium Bonds with π Systems as Electron Donors.","authors":"Heting Wang, Qingzhong Li, Shaoli Liu, Sean A C McDowell","doi":"10.1002/cphc.202401095","DOIUrl":null,"url":null,"abstract":"<p><p>The term \"wolfium bond\" is employed to denote attractive interactions between group 6 elements and electron-rich moieties. A theoretical investigation of the wolfium bond involving the compounds WnF<sub>4</sub>O or WnF<sub>2</sub>O, where Wn represents Cr, Mo or W, and π systems such as C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub> and C<sub>6</sub>H<sub>6</sub>, was conducted using density functional theory (DFT) at the ωB97XD/aug-cc-pVTZ level of theory. Interaction energies range from -3.74 to -10.86 kcal/mol upon formation of the π-Wn bond. The electrostatic contributions to the interaction energy were found to be dominant. Notably, the WnF<sub>4</sub>O system exhibits greater stability than its WnF<sub>2</sub>O counterpart, with the exception of the CrF<sub>x</sub>O system. The charge transfer between the interacting molecules lies between 0.0114 and 0.0946e in magnitude. The predominant type of orbital interaction is π<sub>C-C</sub>→BD*<sub>Wn-O</sub>. Our theoretical investigation revealed the presence of weak, but significant, wolfium bonds between group 6 elements and electron-rich π systems.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401095"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401095","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The term "wolfium bond" is employed to denote attractive interactions between group 6 elements and electron-rich moieties. A theoretical investigation of the wolfium bond involving the compounds WnF4O or WnF2O, where Wn represents Cr, Mo or W, and π systems such as C2H2, C2H4 and C6H6, was conducted using density functional theory (DFT) at the ωB97XD/aug-cc-pVTZ level of theory. Interaction energies range from -3.74 to -10.86 kcal/mol upon formation of the π-Wn bond. The electrostatic contributions to the interaction energy were found to be dominant. Notably, the WnF4O system exhibits greater stability than its WnF2O counterpart, with the exception of the CrFxO system. The charge transfer between the interacting molecules lies between 0.0114 and 0.0946e in magnitude. The predominant type of orbital interaction is πC-C→BD*Wn-O. Our theoretical investigation revealed the presence of weak, but significant, wolfium bonds between group 6 elements and electron-rich π systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信