The sterol-regulating human ARV1 binds cholesterol and phospholipids through its conserved ARV1 homology domain.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jessie Lee Cunningham, Hsing-Yin Liu, Jamie Francisco, Karla K Frietze, J Jose Corbalan, Joseph T Nickels
{"title":"The sterol-regulating human ARV1 binds cholesterol and phospholipids through its conserved ARV1 homology domain.","authors":"Jessie Lee Cunningham, Hsing-Yin Liu, Jamie Francisco, Karla K Frietze, J Jose Corbalan, Joseph T Nickels","doi":"10.1016/j.jbc.2025.108306","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence suggests that ARV1 regulates sterol movement within the cell. Saccharomyces cerevisiae cells lacking ScArv1 have defects in sterol trafficking, distribution, and biosynthesis. HepG2 cells treated with hARV1 anti-sense oligonucleotides accumulate cholesterol in the endoplasmic reticulum. Mice lacking Arv1 have a lean phenotype when fed a high fat diet and show no signs of liver triglyceride or cholesterol accumulation, suggesting a role for Arv1 in lipid transport. Here, we explored the direct lipid binding activity of recombinant human ARV1 using in vitro lipid binding assays. ARV1 lipid binding activity was observed within the first N-terminal 98 amino acids containing the conserved ARV1 homology domain (AHD). The zinc-binding domain and conserved cysteine clusters within the AHD were necessary for lipid binding. Both full-length ARV1 and the AHD bound cholesterol, several phospholipids, and phosphoinositides with high affinity. The AHD showed the highest binding affinity for monophosphorylated phosphoinositides. Several conserved amino acids within the AHD were necessary for phospholipid binding. Biochemical studies suggested that ARV1 exists as a dimer in cells, with oligomerization being critical for ARV1 function, as amino acid mutations predicted to have a negative effect on dimerization cause weakened or complete loss of lipid binding. Our results show for the first time that human ARV1 can directly bind cholesterol and phospholipids. How this activity may function to regulate lipid binding and maintain proper lipid trafficking and/or transport in cells requires further studies.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108306"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108306","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Evidence suggests that ARV1 regulates sterol movement within the cell. Saccharomyces cerevisiae cells lacking ScArv1 have defects in sterol trafficking, distribution, and biosynthesis. HepG2 cells treated with hARV1 anti-sense oligonucleotides accumulate cholesterol in the endoplasmic reticulum. Mice lacking Arv1 have a lean phenotype when fed a high fat diet and show no signs of liver triglyceride or cholesterol accumulation, suggesting a role for Arv1 in lipid transport. Here, we explored the direct lipid binding activity of recombinant human ARV1 using in vitro lipid binding assays. ARV1 lipid binding activity was observed within the first N-terminal 98 amino acids containing the conserved ARV1 homology domain (AHD). The zinc-binding domain and conserved cysteine clusters within the AHD were necessary for lipid binding. Both full-length ARV1 and the AHD bound cholesterol, several phospholipids, and phosphoinositides with high affinity. The AHD showed the highest binding affinity for monophosphorylated phosphoinositides. Several conserved amino acids within the AHD were necessary for phospholipid binding. Biochemical studies suggested that ARV1 exists as a dimer in cells, with oligomerization being critical for ARV1 function, as amino acid mutations predicted to have a negative effect on dimerization cause weakened or complete loss of lipid binding. Our results show for the first time that human ARV1 can directly bind cholesterol and phospholipids. How this activity may function to regulate lipid binding and maintain proper lipid trafficking and/or transport in cells requires further studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信