InSty: A ProDy Module for Evaluating Protein Interactions and Stability.

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karolina Mikulska-Ruminska, James M Krieger, Anupam Banerjee, Xin Cao, Gary Wu, Anthony T Bogetti, Feng Zhang, Carlos Simmerling, Evangelos A Coutsias, Ivet Bahar
{"title":"InSty: A ProDy Module for Evaluating Protein Interactions and Stability.","authors":"Karolina Mikulska-Ruminska, James M Krieger, Anupam Banerjee, Xin Cao, Gary Wu, Anthony T Bogetti, Feng Zhang, Carlos Simmerling, Evangelos A Coutsias, Ivet Bahar","doi":"10.1016/j.jmb.2025.169009","DOIUrl":null,"url":null,"abstract":"<p><p>ProDy is a widely used application programming interface for analyzing the collective dynamics of proteins and their complexes, offering enhanced capabilities to address the growing needs of the computational biology community to bridge structure and function. Here, we introduce InSty, a new module integrated into ProDy to identify and quantify intra- and intermolecular interactions critical to protein stability and structural dynamics. InSty analyzes the non-covalent interactions using conformational ensemble data from both experiments and computational predictions, assesses their time evolution and persistence during molecular dynamics simulations as well as their conservation across homologs. It provides insights into the significance of these interactions in achieving function and/or supporting stability. InSty outputs lend themselves to statistical evaluation, visualization, and automated ensemble analysis for interpreting the significance of the interactions in the context of protein dynamics, sequence evolution, and allostery. Consolidation of InSty with various ProDy modules enables its efficient usage as a versatile tool that supports mutagenesis studies and identifies critical spots for functional interactions. The InSty module is available as part of the ProDy package at https://github.com/prody/ProDy.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169009"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ProDy is a widely used application programming interface for analyzing the collective dynamics of proteins and their complexes, offering enhanced capabilities to address the growing needs of the computational biology community to bridge structure and function. Here, we introduce InSty, a new module integrated into ProDy to identify and quantify intra- and intermolecular interactions critical to protein stability and structural dynamics. InSty analyzes the non-covalent interactions using conformational ensemble data from both experiments and computational predictions, assesses their time evolution and persistence during molecular dynamics simulations as well as their conservation across homologs. It provides insights into the significance of these interactions in achieving function and/or supporting stability. InSty outputs lend themselves to statistical evaluation, visualization, and automated ensemble analysis for interpreting the significance of the interactions in the context of protein dynamics, sequence evolution, and allostery. Consolidation of InSty with various ProDy modules enables its efficient usage as a versatile tool that supports mutagenesis studies and identifies critical spots for functional interactions. The InSty module is available as part of the ProDy package at https://github.com/prody/ProDy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信