The central fibre areas in the tibial footprint of the posterior cruciate ligament show the highest contribution to restriction of a posterior drawer force—A biomechanical robotic investigation

IF 2 Q2 ORTHOPEDICS
Adrian Deichsel, Thorben Briese, Wenke Liu, Michael J. Raschke, Alina Albert, Christian Peez, Elmar Herbst, Christoph Kittl
{"title":"The central fibre areas in the tibial footprint of the posterior cruciate ligament show the highest contribution to restriction of a posterior drawer force—A biomechanical robotic investigation","authors":"Adrian Deichsel,&nbsp;Thorben Briese,&nbsp;Wenke Liu,&nbsp;Michael J. Raschke,&nbsp;Alina Albert,&nbsp;Christian Peez,&nbsp;Elmar Herbst,&nbsp;Christoph Kittl","doi":"10.1002/jeo2.70174","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>The purpose of this study was to determine the role of different fibre areas of the tibial footprint of the posterior cruciate ligament (PCL) in restraining posterior tibial translation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A sequential cutting study on cadaveric knee specimens (<i>n</i> = 8) was performed, utilizing a six-degrees-of-freedom robotic test setup. The tibial attachment of the PCL was divided into nine areas, which were sequentially cut in a randomized sequence. After determining the native knee kinematics with 89 N anterior, and posterior tibial translation force at 0°, 30°, 60° and 90° knee flexion, a displacement-controlled protocol was performed replaying the native motion. Utilizing the principle of superposition, the reduction of the restraining force represents the contribution (in-situ forces) of each cut fibre area.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The PCL was found to contribute 25.3 ± 11.1% in 0° of flexion, 49.7 ± 19.2% in 30° of flexion, 58.9 ± 19.3% in 60° of flexion and 50.6 ± 15.1% in 90° of flexion, to the restriction of a posterior drawer force. Depending on the flexion angle, every cut area of the tibial PCL footprint was shown to be a significant restrictor of posterior tibial translation (<i>p</i> ≤ 0.05). When investigating the fibre areas from anterior to posterior, the central fibre areas showed the highest contribution (35.0%–44.3%). When investigating the fibre areas from medial to lateral, the lateral fibre areas showed the highest contribution (41.4%–43.6%) from 0 to 30° knee flexion, while the medial fibre areas showed the highest contribution (41.5%) in 90° knee flexion.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The central row areas in the tibial footprint of the PCL were identified to be the main contributors inside the tibial footprint, while, depending on the flexion angle, the medial or lateral column fibre areas showed a higher contribution. These findings might inform the clinician to place a PCL graft centrally into the tibial footprint during reconstruction.</p>\n </section>\n \n <section>\n \n <h3> Level of Evidence</h3>\n \n <p>Not applicable.</p>\n </section>\n </div>","PeriodicalId":36909,"journal":{"name":"Journal of Experimental Orthopaedics","volume":"12 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeo2.70174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Orthopaedics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeo2.70174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The purpose of this study was to determine the role of different fibre areas of the tibial footprint of the posterior cruciate ligament (PCL) in restraining posterior tibial translation.

Methods

A sequential cutting study on cadaveric knee specimens (n = 8) was performed, utilizing a six-degrees-of-freedom robotic test setup. The tibial attachment of the PCL was divided into nine areas, which were sequentially cut in a randomized sequence. After determining the native knee kinematics with 89 N anterior, and posterior tibial translation force at 0°, 30°, 60° and 90° knee flexion, a displacement-controlled protocol was performed replaying the native motion. Utilizing the principle of superposition, the reduction of the restraining force represents the contribution (in-situ forces) of each cut fibre area.

Results

The PCL was found to contribute 25.3 ± 11.1% in 0° of flexion, 49.7 ± 19.2% in 30° of flexion, 58.9 ± 19.3% in 60° of flexion and 50.6 ± 15.1% in 90° of flexion, to the restriction of a posterior drawer force. Depending on the flexion angle, every cut area of the tibial PCL footprint was shown to be a significant restrictor of posterior tibial translation (p ≤ 0.05). When investigating the fibre areas from anterior to posterior, the central fibre areas showed the highest contribution (35.0%–44.3%). When investigating the fibre areas from medial to lateral, the lateral fibre areas showed the highest contribution (41.4%–43.6%) from 0 to 30° knee flexion, while the medial fibre areas showed the highest contribution (41.5%) in 90° knee flexion.

Conclusion

The central row areas in the tibial footprint of the PCL were identified to be the main contributors inside the tibial footprint, while, depending on the flexion angle, the medial or lateral column fibre areas showed a higher contribution. These findings might inform the clinician to place a PCL graft centrally into the tibial footprint during reconstruction.

Level of Evidence

Not applicable.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Orthopaedics
Journal of Experimental Orthopaedics Medicine-Orthopedics and Sports Medicine
CiteScore
3.20
自引率
5.60%
发文量
114
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信