Category-instance distillation based on visual-language models for rehearsal-free class incremental learning

IF 1.3 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weilong Jin, Zilei Wang, Yixin Zhang
{"title":"Category-instance distillation based on visual-language models for rehearsal-free class incremental learning","authors":"Weilong Jin,&nbsp;Zilei Wang,&nbsp;Yixin Zhang","doi":"10.1049/cvi2.12327","DOIUrl":null,"url":null,"abstract":"<p>Recently, visual-language models (VLMs) have displayed potent capabilities in the field of computer vision. Their emerging trend as the backbone of visual tasks necessitates studying class incremental learning (CIL) issues within the VLM architecture. However, the pre-training data for many VLMs is proprietary, and during the incremental phase, old task data may also raise privacy issues. Moreover, replay-based methods can introduce new problems like class imbalance, the selection of data for replay and a trade-off between replay cost and performance. Therefore, the authors choose the more challenging rehearsal-free settings. In this paper, the authors study class-incremental tasks based on the large pre-trained vision-language models like CLIP model. Initially, at the category level, the authors combine traditional optimisation and distillation techniques, utilising both pre-trained models and models trained in previous incremental stages to jointly guide the training of the new model. This paradigm effectively balances the stability and plasticity of the new model, mitigating the issue of catastrophic forgetting. Moreover, utilising the VLM infrastructure, the authors redefine the relationship between instances. This allows us to glean fine-grained instance relational information from the a priori knowledge provided during pre-training. The authors supplement this approach with an entropy-balancing method that allows the model to adaptively distribute optimisation weights across training samples. The authors’ experimental results validate that their method, within the framework of VLMs, outperforms traditional CIL methods.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12327","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.12327","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, visual-language models (VLMs) have displayed potent capabilities in the field of computer vision. Their emerging trend as the backbone of visual tasks necessitates studying class incremental learning (CIL) issues within the VLM architecture. However, the pre-training data for many VLMs is proprietary, and during the incremental phase, old task data may also raise privacy issues. Moreover, replay-based methods can introduce new problems like class imbalance, the selection of data for replay and a trade-off between replay cost and performance. Therefore, the authors choose the more challenging rehearsal-free settings. In this paper, the authors study class-incremental tasks based on the large pre-trained vision-language models like CLIP model. Initially, at the category level, the authors combine traditional optimisation and distillation techniques, utilising both pre-trained models and models trained in previous incremental stages to jointly guide the training of the new model. This paradigm effectively balances the stability and plasticity of the new model, mitigating the issue of catastrophic forgetting. Moreover, utilising the VLM infrastructure, the authors redefine the relationship between instances. This allows us to glean fine-grained instance relational information from the a priori knowledge provided during pre-training. The authors supplement this approach with an entropy-balancing method that allows the model to adaptively distribute optimisation weights across training samples. The authors’ experimental results validate that their method, within the framework of VLMs, outperforms traditional CIL methods.

Abstract Image

Abstract Image

Abstract Image

基于视觉语言模型的类别-实例蒸馏在无预演课堂增量学习中的应用
近年来,视觉语言模型(VLMs)在计算机视觉领域显示出强大的能力。它们作为可视化任务的支柱的新兴趋势需要研究VLM体系结构中的类增量学习(CIL)问题。然而,许多vlm的预训练数据是专有的,并且在增量阶段,旧的任务数据也可能引起隐私问题。此外,基于重放的方法可能会引入新的问题,如类不平衡、重放数据的选择以及重放成本和性能之间的权衡。因此,作者选择了更具挑战性的场景。本文研究了基于大型预训练视觉语言模型(如CLIP模型)的类增量任务。最初,在类别层面,作者结合了传统的优化和蒸馏技术,利用预训练模型和之前增量阶段训练的模型来共同指导新模型的训练。这种范式有效地平衡了新模型的稳定性和可塑性,减轻了灾难性遗忘的问题。此外,利用VLM基础结构,作者重新定义了实例之间的关系。这使我们能够从预训练期间提供的先验知识中收集细粒度的实例关系信息。作者用熵平衡方法补充了这种方法,该方法允许模型自适应地在训练样本之间分配优化权重。实验结果表明,该方法在vlm框架内优于传统的CIL方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信