Long Shi, Jiang Zhai, Qing Li, Liangliang Zhu, Xin Zhao, Su Chen, Guo-Xing Li
{"title":"CDs/PBAT Nanofiber Films With High Tensile Strength and Flame-Retardant Property via Microfluidic Technology","authors":"Long Shi, Jiang Zhai, Qing Li, Liangliang Zhu, Xin Zhao, Su Chen, Guo-Xing Li","doi":"10.1002/pol.20240868","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The poly(butylene adipate-co-terephthalate) (PBAT) nanofiber film prepared by electrospinning method exhibits limited application in many fields due to its poor flame retardancy and machinal property, despite being a biodegradable material with exceptional toughness and ductility properties. In this work, we employed microfluidic technology to continuously produce blue fluorescent carbon dots (CDs) on an aluminum-based microfluidic chip using citrate and ethanolamine as precursors. Subsequently, utilizing microfluidic electrospinning technology, the CDs/PBAT composite nanofiber films with blue fluorescence were prepared in situ reaction. Interestingly, compared to pure PBAT nanofiber membranes, the CDs/PBAT composite nanofiber membranes exhibit a tensile strength of 4.31 MPa, representing a remarkable increase of 3.24 times, and an elongation at break of 491%, indicating an improvement of 1.62 times. More importantly, it had demonstrated that the incorporation of CDs into PBAT can achieve flame-retardant effects. We firmly believe that the microfluidic strategy could open up a new idea for the synthesis of CDs and point out the direction for the meaningful fabrication of PBAT nanofiber film with high tensile strength and flame-retardant property.</p>\n </div>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 4","pages":"1023-1032"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240868","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The poly(butylene adipate-co-terephthalate) (PBAT) nanofiber film prepared by electrospinning method exhibits limited application in many fields due to its poor flame retardancy and machinal property, despite being a biodegradable material with exceptional toughness and ductility properties. In this work, we employed microfluidic technology to continuously produce blue fluorescent carbon dots (CDs) on an aluminum-based microfluidic chip using citrate and ethanolamine as precursors. Subsequently, utilizing microfluidic electrospinning technology, the CDs/PBAT composite nanofiber films with blue fluorescence were prepared in situ reaction. Interestingly, compared to pure PBAT nanofiber membranes, the CDs/PBAT composite nanofiber membranes exhibit a tensile strength of 4.31 MPa, representing a remarkable increase of 3.24 times, and an elongation at break of 491%, indicating an improvement of 1.62 times. More importantly, it had demonstrated that the incorporation of CDs into PBAT can achieve flame-retardant effects. We firmly believe that the microfluidic strategy could open up a new idea for the synthesis of CDs and point out the direction for the meaningful fabrication of PBAT nanofiber film with high tensile strength and flame-retardant property.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.