Keming Ma, Qinlong Li, Kaizhi Huang, Ming Yi, Liang Jin
{"title":"A RIS-Based Single-Channel Direction-of-Arrival Estimation Method for Communication Signals","authors":"Keming Ma, Qinlong Li, Kaizhi Huang, Ming Yi, Liang Jin","doi":"10.1049/cmu2.70012","DOIUrl":null,"url":null,"abstract":"<p>The development of reconfigurable intelligent surface (RIS) makes direction-of-arrival (DOA) estimation possible for single-antenna receivers. However, non-ideal situations such as spectral aliasing occur when facing communication signals using orthogonal frequency division multiplexing modulation. This paper proposes a RIS-based single-channel DOA estimation method for communication signals. Specifically, by extending the time intervals to dynamically reduce the RIS state change rate, a real-time DOA estimation is achieved while mitigating the impact of non-ideal spectral shifts on communication. Then, based on the compressed sensing and mutual incoherence property, the method exploits the sparse property of the signal in space to reduce the estimation time while improving the estimation accuracy. Simulation results show an <span></span><math>\n <semantics>\n <mrow>\n <mn>86</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$86\\%$</annotation>\n </semantics></math> reduction in computation time for the proposed method compared to the traditional CVX tool. Additionally, the estimation accuracy is as low as <span></span><math>\n <semantics>\n <mrow>\n <mn>0.02</mn>\n <mo>deg</mo>\n </mrow>\n <annotation>$0.02\\deg$</annotation>\n </semantics></math>. To verify the practicality and robustness, we develop a prototype system and conduct extensive experiments. The results are consistent with our theoretical analysis, and the method proposed in this paper can realize single-path DOA estimation with an accuracy of less than <span></span><math>\n <semantics>\n <mrow>\n <mn>0.1</mn>\n <mo>deg</mo>\n </mrow>\n <annotation>$0.1\\deg$</annotation>\n </semantics></math> within <span></span><math>\n <semantics>\n <mrow>\n <mn>0.4276</mn>\n <mspace></mspace>\n <mi>s</mi>\n </mrow>\n <annotation>$0.4276\\text{ s}$</annotation>\n </semantics></math>. More excitingly, the presented experimental platform achieves DOA estimation for two coherent paths.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of reconfigurable intelligent surface (RIS) makes direction-of-arrival (DOA) estimation possible for single-antenna receivers. However, non-ideal situations such as spectral aliasing occur when facing communication signals using orthogonal frequency division multiplexing modulation. This paper proposes a RIS-based single-channel DOA estimation method for communication signals. Specifically, by extending the time intervals to dynamically reduce the RIS state change rate, a real-time DOA estimation is achieved while mitigating the impact of non-ideal spectral shifts on communication. Then, based on the compressed sensing and mutual incoherence property, the method exploits the sparse property of the signal in space to reduce the estimation time while improving the estimation accuracy. Simulation results show an reduction in computation time for the proposed method compared to the traditional CVX tool. Additionally, the estimation accuracy is as low as . To verify the practicality and robustness, we develop a prototype system and conduct extensive experiments. The results are consistent with our theoretical analysis, and the method proposed in this paper can realize single-path DOA estimation with an accuracy of less than within . More excitingly, the presented experimental platform achieves DOA estimation for two coherent paths.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf