Propagation of initial uncertainties to Arthurs–Kelly inequality

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Mi-Ra Hwang, Eylee Jung, DaeKil Park
{"title":"Propagation of initial uncertainties to Arthurs–Kelly inequality","authors":"Mi-Ra Hwang,&nbsp;Eylee Jung,&nbsp;DaeKil Park","doi":"10.1007/s11128-025-04678-w","DOIUrl":null,"url":null,"abstract":"<div><p>The generalized version of the Arthurs–Kelly inequality is derived when the initial state is a tripartite separable state. When each initial substate obeys the minimal uncertainty, the generalized version reduces to the well-known inequality, i.e., twice of the Heisenberg uncertainty. If the initial probe state is entangled, it is shown that the generalized version of the Arthurs–Kelly inequality can be violated. We show the violation explicitly by introducing a special example.\n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04678-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The generalized version of the Arthurs–Kelly inequality is derived when the initial state is a tripartite separable state. When each initial substate obeys the minimal uncertainty, the generalized version reduces to the well-known inequality, i.e., twice of the Heisenberg uncertainty. If the initial probe state is entangled, it is shown that the generalized version of the Arthurs–Kelly inequality can be violated. We show the violation explicitly by introducing a special example.

初始不确定性对arthur - kelly不等式的传播
在初始状态为三方可分离状态时,导出了arthur - kelly不等式的广义形式。当每个初始子态服从最小不确定度时,广义版简化为众所周知的不等式,即海森堡不确定度的两倍。如果初始探测态是纠缠态,则证明arthur - kelly不等式的广义版可以被违反。我们通过引入一个特殊的例子来明确地说明这种违背。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信