V. A. Ozheredov, A. B. Struminskii, I. Yu. Grigor’eva
{"title":"Acceleration Parameters of Coronal Mass Ejections Associated with Solar Proton Events of February–July 2023","authors":"V. A. Ozheredov, A. B. Struminskii, I. Yu. Grigor’eva","doi":"10.1134/S0016793224700373","DOIUrl":null,"url":null,"abstract":"<p>The methods proposed earlier by the authors to extrapolate the positions of coronal mass ejections (CMEs) to the propagation times from the beginning to the escape into interplanetary space by the SOHO/LASCO coronagraph data have been used. This makes it possible to obtain the CME kinematic parameters needed to refine the solar proton acceleration model for the events of February 17, 24–25, and 28 and July 16–17, 2023 (the most significant proton events of the ascending phase of solar cycle 25). For proton flares on the visible disk of the Sun, it is found that CMEs should have started to accelerate before the selected zero time (heating of the flare plasma to 12 MK (GOES), electron acceleration greater than 100 keV, and the onset of nonthermal emission (ACS SPI, RSTN). Particle and CME accelerations continue at least during the active phase of the flare (<i>T</i> > 12 MK). Evidence has been obtained for the sequential acceleration of two CMEs, slow and fast, in the event of February 25, 2023, when the second CME caught up with the first and engulfed it (“cannibalism”).</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 8","pages":"1273 - 1280"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700373","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The methods proposed earlier by the authors to extrapolate the positions of coronal mass ejections (CMEs) to the propagation times from the beginning to the escape into interplanetary space by the SOHO/LASCO coronagraph data have been used. This makes it possible to obtain the CME kinematic parameters needed to refine the solar proton acceleration model for the events of February 17, 24–25, and 28 and July 16–17, 2023 (the most significant proton events of the ascending phase of solar cycle 25). For proton flares on the visible disk of the Sun, it is found that CMEs should have started to accelerate before the selected zero time (heating of the flare plasma to 12 MK (GOES), electron acceleration greater than 100 keV, and the onset of nonthermal emission (ACS SPI, RSTN). Particle and CME accelerations continue at least during the active phase of the flare (T > 12 MK). Evidence has been obtained for the sequential acceleration of two CMEs, slow and fast, in the event of February 25, 2023, when the second CME caught up with the first and engulfed it (“cannibalism”).
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.