Impact of climate change on hydrological fluxes in the Upper Bhagirathi River Basin, Uttarakhand

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Shyam Sundar Bhardwaj, Madan Kumar Jha, Bhumika Uniyal
{"title":"Impact of climate change on hydrological fluxes in the Upper Bhagirathi River Basin, Uttarakhand","authors":"Shyam Sundar Bhardwaj,&nbsp;Madan Kumar Jha,&nbsp;Bhumika Uniyal","doi":"10.1007/s10661-025-13676-5","DOIUrl":null,"url":null,"abstract":"<div><p>The Himalayan rivers are the major source of freshwater resources and have a tremendous potential for hydroelectric generation. However, assessing the water availability under climate change is challenging due to data scarcity, undulating topography, and complex climatic conditions. SWAT modeling investigates all potential consequences of variations in climate on the hydrological fluxes in the Upper Bhagirathi River Basin. Two global circulation models (GCMs) with three different climatic scenarios were employed. Quantile mapping has been used to correct the bias of GCM data. The developed model accurately simulated streamflow during calibration and validation at daily (NSE = 0.79 − 0.74, <i>r</i> = 0.89–0.87, and RMSE = 61.95 m<sup>3</sup>/s–79.75 m<sup>3</sup>/s) and monthly (NSE = 0.92 − 0.93, <i>r</i> = 0.96–0.97, and RMSE = 34.19 m<sup>3</sup>/s–37.39 m<sup>3</sup>/s) time steps. The analysis of the outcomes from MIROC6 and NorESM2-LM revealed that the rise in streamflow, surface runoff, lateral flow, and baseflow is more pronounced in MIROC6 across all three climatic scenarios. Under all scenarios, both MIROC6 and NorESM2-LM models show significant variations in snowfall and snowmelt patterns, with the area under snowfall reaching up to 51.65% for MIROC6 under SSP1-2.6 and snowmelt area peaking at 64.30% for MIROC6 under SSP2-4.5. This study’s findings will offer essential insights for policymakers, practitioners, and water resource managers in developing climate-resilient strategies for sustainable water management in Himalayan catchments.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13676-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Himalayan rivers are the major source of freshwater resources and have a tremendous potential for hydroelectric generation. However, assessing the water availability under climate change is challenging due to data scarcity, undulating topography, and complex climatic conditions. SWAT modeling investigates all potential consequences of variations in climate on the hydrological fluxes in the Upper Bhagirathi River Basin. Two global circulation models (GCMs) with three different climatic scenarios were employed. Quantile mapping has been used to correct the bias of GCM data. The developed model accurately simulated streamflow during calibration and validation at daily (NSE = 0.79 − 0.74, r = 0.89–0.87, and RMSE = 61.95 m3/s–79.75 m3/s) and monthly (NSE = 0.92 − 0.93, r = 0.96–0.97, and RMSE = 34.19 m3/s–37.39 m3/s) time steps. The analysis of the outcomes from MIROC6 and NorESM2-LM revealed that the rise in streamflow, surface runoff, lateral flow, and baseflow is more pronounced in MIROC6 across all three climatic scenarios. Under all scenarios, both MIROC6 and NorESM2-LM models show significant variations in snowfall and snowmelt patterns, with the area under snowfall reaching up to 51.65% for MIROC6 under SSP1-2.6 and snowmelt area peaking at 64.30% for MIROC6 under SSP2-4.5. This study’s findings will offer essential insights for policymakers, practitioners, and water resource managers in developing climate-resilient strategies for sustainable water management in Himalayan catchments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信