Axisymmetric Poiseuille Flow with Temperature-Dependent Viscosity under Pressure and Temperature Gradients

IF 1 4区 工程技术 Q4 MECHANICS
D. V. Knyazev
{"title":"Axisymmetric Poiseuille Flow with Temperature-Dependent Viscosity under Pressure and Temperature Gradients","authors":"D. V. Knyazev","doi":"10.1134/S001546282460367X","DOIUrl":null,"url":null,"abstract":"<p>The study of steady-state axisymmetric Poiseuille flow of a Newtonian fluid induced by streamwise pressure and temperature gradients in the case of the dynamic viscosity coefficient dependent on the temperature is reduced to finding solutions to a three-parameter boundary-value problem for a third-order ordinary differential equation. In the domain of the parameter space corresponding to negative axial temperature gradients, there exist two branches of solutions describing flows accompanied by heat removal from the fluid. When the branches meet, they form a boundary in the phase space beyond which no solutions to the Poiseuille-type problem exist. One of the branches can be continued into the domain of non-negative values of the streamwise temperature gradient and contains an isothermal Poiseuille solution. Along this branch, curve of the flow rate as a function of the dimensionless axial temperature gradient has a minimum in the domain of positive values of the latter. In this part of the parameter space, the heat exchange regime with the external medium depends on the relation between all three dimensionless numbers of the problem. The heat exchange regime affects the nature of flow, slowing down the flow near the rigid wall during heat transfer, and forming a more filled velocity profile when heat is absorbed by fluid.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 6","pages":"1741 - 1750"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S001546282460367X.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S001546282460367X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of steady-state axisymmetric Poiseuille flow of a Newtonian fluid induced by streamwise pressure and temperature gradients in the case of the dynamic viscosity coefficient dependent on the temperature is reduced to finding solutions to a three-parameter boundary-value problem for a third-order ordinary differential equation. In the domain of the parameter space corresponding to negative axial temperature gradients, there exist two branches of solutions describing flows accompanied by heat removal from the fluid. When the branches meet, they form a boundary in the phase space beyond which no solutions to the Poiseuille-type problem exist. One of the branches can be continued into the domain of non-negative values of the streamwise temperature gradient and contains an isothermal Poiseuille solution. Along this branch, curve of the flow rate as a function of the dimensionless axial temperature gradient has a minimum in the domain of positive values of the latter. In this part of the parameter space, the heat exchange regime with the external medium depends on the relation between all three dimensionless numbers of the problem. The heat exchange regime affects the nature of flow, slowing down the flow near the rigid wall during heat transfer, and forming a more filled velocity profile when heat is absorbed by fluid.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信