Pulse shape optimization against Doppler shifts and delays in optical quantum communication

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Emanuel Schlake, Roy Barzel, Dennis Rätzel, Claus Lämmerzahl
{"title":"Pulse shape optimization against Doppler shifts and delays in optical quantum communication","authors":"Emanuel Schlake,&nbsp;Roy Barzel,&nbsp;Dennis Rätzel,&nbsp;Claus Lämmerzahl","doi":"10.1140/epjqt/s40507-025-00321-w","DOIUrl":null,"url":null,"abstract":"<div><p>High relative velocities and large distances in space-based quantum communication with satellites in lower earth orbits can lead to significant Doppler shifts and delays of the signal impairing the achievable performance if uncorrected. We analyze the influence of systematic and stochastic Doppler shift and delay in the specific case of a continuous variable quantum key distribution (CV-QKD) protocol and identify the generalized correlation function, the ambiguity function, as a decisive measure of performance loss. Investigating the generalized correlations as well as private capacity bounds for specific choices of spectral amplitude shape (Gaussian, single- and double-sided Lorentzian), we find that this choice has a significant impact on the robustness of the quantum communication protocol to spectral and temporal synchronization errors. We conclude that optimizing the pulse shape can be a building block in the resilient design of quantum network infrastructure.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00321-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00321-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

High relative velocities and large distances in space-based quantum communication with satellites in lower earth orbits can lead to significant Doppler shifts and delays of the signal impairing the achievable performance if uncorrected. We analyze the influence of systematic and stochastic Doppler shift and delay in the specific case of a continuous variable quantum key distribution (CV-QKD) protocol and identify the generalized correlation function, the ambiguity function, as a decisive measure of performance loss. Investigating the generalized correlations as well as private capacity bounds for specific choices of spectral amplitude shape (Gaussian, single- and double-sided Lorentzian), we find that this choice has a significant impact on the robustness of the quantum communication protocol to spectral and temporal synchronization errors. We conclude that optimizing the pulse shape can be a building block in the resilient design of quantum network infrastructure.

在与低地球轨道卫星进行天基量子通信时,高相对速度和大距离会导致信号出现明显的多普勒频移和延迟,如果不加以纠正,就会损害可实现的性能。我们分析了连续可变量子密钥分发(CV-QKD)协议中系统性和随机性多普勒频移和延迟的影响,并确定广义相关函数--模糊函数--是衡量性能损失的决定性指标。通过研究广义相关性以及特定频谱振幅形状选择(高斯、单边和双边洛伦兹)的私人容量边界,我们发现这种选择对量子通信协议在频谱和时间同步错误面前的鲁棒性有重大影响。我们的结论是,优化脉冲形状可以成为量子网络基础设施弹性设计的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信