Electrodynamic Mechanism of Expansion of Two-Component Plasma in a Spherically Symmetric Vacuum Gap

IF 1 4区 工程技术 Q4 MECHANICS
A. O. Kokovin, V. Yu. Kozhevnikov, A. V. Kozyrev, N. S. Semenyuk
{"title":"Electrodynamic Mechanism of Expansion of Two-Component Plasma in a Spherically Symmetric Vacuum Gap","authors":"A. O. Kokovin,&nbsp;V. Yu. Kozhevnikov,&nbsp;A. V. Kozyrev,&nbsp;N. S. Semenyuk","doi":"10.1134/S0015462824604601","DOIUrl":null,"url":null,"abstract":"<p>The results of theoretical modeling of spherically symmetric expansion of collisionless carbon plasma from a compact explosive emission center of a vacuum discharge are presented. The modeling is based on the joint solution of the Vlasov kinetic equations for electrons and ions and the Poisson equation for the electric field, written in the spherical coordinate system and averaged over angular variables. It is shown that the calculated cathode plasma expansion velocities are significantly lower in the spherically symmetric geometry than the expansion velocities of plasma with the same parameters obtained by solving the plane problem. The observed expansion velocities of the cathode plume plasma at the level of 3.5 × 10<sup>6</sup> cm/s can be explained within the framework of the collisionless mechanism when the criterion imposed on the ratio of the electric emission current to the limiting electric current in the vacuum gap is fulfilled.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 6","pages":"1860 - 1868"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824604601","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The results of theoretical modeling of spherically symmetric expansion of collisionless carbon plasma from a compact explosive emission center of a vacuum discharge are presented. The modeling is based on the joint solution of the Vlasov kinetic equations for electrons and ions and the Poisson equation for the electric field, written in the spherical coordinate system and averaged over angular variables. It is shown that the calculated cathode plasma expansion velocities are significantly lower in the spherically symmetric geometry than the expansion velocities of plasma with the same parameters obtained by solving the plane problem. The observed expansion velocities of the cathode plume plasma at the level of 3.5 × 106 cm/s can be explained within the framework of the collisionless mechanism when the criterion imposed on the ratio of the electric emission current to the limiting electric current in the vacuum gap is fulfilled.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信