Snake Optimizer Improved Variational Mode Decomposition for Short-Term Prediction of Vehicle Charging Loads

IF 3.3 Q3 ENERGY & FUELS
Quanxue Guan;Qinhe Liu;Shaocong Tao;Yunjian Xu;Di Zhou;Haoyong Chen;Xiaojun Tan
{"title":"Snake Optimizer Improved Variational Mode Decomposition for Short-Term Prediction of Vehicle Charging Loads","authors":"Quanxue Guan;Qinhe Liu;Shaocong Tao;Yunjian Xu;Di Zhou;Haoyong Chen;Xiaojun Tan","doi":"10.1109/OAJPE.2025.3529944","DOIUrl":null,"url":null,"abstract":"The rapid proliferation of electric vehicles (EVs) significantly impacts the power grid, necessitating effective forecasting of charging loads. For ultra short-term load prediction, this paper proposes a Snake Optimization (SO)-Variational Mode Decomposition (VMD)-Long Short-Term Memory (LSTM) algorithm trained by only the historical charging data. Before the prediction starts, the VMD method is utilized to minimize the data complexity, yielding several multiple Intrinsic Mode Functions (IMFs) that correspond to the charging load features at different time scales. The VMD parameters are automatically adjusted using the SO method, instead of the trial-and-error method, to trade off the prediction accuracy against computational overhead. Once the parameters of the VMD are determined, the same number of LSTM networks are employed to forecast the corresponding charging loads from these IMFs, with one LSTM for each IMF. Due to the VMD, IMFs with spanned center frequencies containing few irregularities make the prediction simple. These LSTM outcomes are then summed to obtain the overall load prediction. Experiments are carried out to show that the proposed parallel structure of multiple LSTM networks can achieve high prediction accuracy without requiring complex model structures. Our proposed algorithm outperforms the traditional prediction methods including Gate Recurrent Unit, Extreme Learning Machine, LSTM, and their combination with VMD, significantly reducing the Root Mean Square Error and the Mean Absolute Error by 30.1% and 32.9% in comparison with the optimal VMD-LSTM approach, and by 59.3% and 62.6% with respect to the baseline LSTM method.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"76-87"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10846941","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10846941/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid proliferation of electric vehicles (EVs) significantly impacts the power grid, necessitating effective forecasting of charging loads. For ultra short-term load prediction, this paper proposes a Snake Optimization (SO)-Variational Mode Decomposition (VMD)-Long Short-Term Memory (LSTM) algorithm trained by only the historical charging data. Before the prediction starts, the VMD method is utilized to minimize the data complexity, yielding several multiple Intrinsic Mode Functions (IMFs) that correspond to the charging load features at different time scales. The VMD parameters are automatically adjusted using the SO method, instead of the trial-and-error method, to trade off the prediction accuracy against computational overhead. Once the parameters of the VMD are determined, the same number of LSTM networks are employed to forecast the corresponding charging loads from these IMFs, with one LSTM for each IMF. Due to the VMD, IMFs with spanned center frequencies containing few irregularities make the prediction simple. These LSTM outcomes are then summed to obtain the overall load prediction. Experiments are carried out to show that the proposed parallel structure of multiple LSTM networks can achieve high prediction accuracy without requiring complex model structures. Our proposed algorithm outperforms the traditional prediction methods including Gate Recurrent Unit, Extreme Learning Machine, LSTM, and their combination with VMD, significantly reducing the Root Mean Square Error and the Mean Absolute Error by 30.1% and 32.9% in comparison with the optimal VMD-LSTM approach, and by 59.3% and 62.6% with respect to the baseline LSTM method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信