An insider threat detection method based on improved Test-Time Training model

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoling Tao , Jianxiang Liu , Yuelin Yu , Haijing Zhang , Ying Huang
{"title":"An insider threat detection method based on improved Test-Time Training model","authors":"Xiaoling Tao ,&nbsp;Jianxiang Liu ,&nbsp;Yuelin Yu ,&nbsp;Haijing Zhang ,&nbsp;Ying Huang","doi":"10.1016/j.hcc.2024.100283","DOIUrl":null,"url":null,"abstract":"<div><div>As network and information systems become widely adopted across industries, cybersecurity concerns have grown more prominent. Among these concerns, insider threats are considered particularly covert and destructive. Insider threats refer to malicious insiders exploiting privileged access to networks, systems, and data to intentionally compromise organizational security. Detecting these threats is challenging due to the complexity and variability of user behavior data, combined with the subtle and covert nature of insider actions. Traditional detection methods often fail to capture both long-term dependencies and short-term fluctuations in time-series data, which are crucial for identifying anomalous behaviors. To address these issues, this paper introduces the Test-Time Training (TTT) model for the first time in the field of insider threat detection, and proposes a detection method based on the TTT-ECA-ResNet model. First, the dataset is preprocessed. TTT is applied to extract long-term dependencies in features, effectively capturing dynamic sequence changes. The Residual Network, incorporating the Efficient Channel Attention mechanism, is used to extract local feature patterns, capturing relationships between different positions in time-series data. Finally, a Linear layer is employed for more precise detection of insider threats. The proposed approaches were evaluated using the CMU CERT Insider Threat Dataset, achieving an AUC of 98.75% and an F1-score of 96.81%. The experimental results demonstrate the effectiveness of the proposed methods, outperforming other state-of-the-art approaches.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"5 1","pages":"Article 100283"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As network and information systems become widely adopted across industries, cybersecurity concerns have grown more prominent. Among these concerns, insider threats are considered particularly covert and destructive. Insider threats refer to malicious insiders exploiting privileged access to networks, systems, and data to intentionally compromise organizational security. Detecting these threats is challenging due to the complexity and variability of user behavior data, combined with the subtle and covert nature of insider actions. Traditional detection methods often fail to capture both long-term dependencies and short-term fluctuations in time-series data, which are crucial for identifying anomalous behaviors. To address these issues, this paper introduces the Test-Time Training (TTT) model for the first time in the field of insider threat detection, and proposes a detection method based on the TTT-ECA-ResNet model. First, the dataset is preprocessed. TTT is applied to extract long-term dependencies in features, effectively capturing dynamic sequence changes. The Residual Network, incorporating the Efficient Channel Attention mechanism, is used to extract local feature patterns, capturing relationships between different positions in time-series data. Finally, a Linear layer is employed for more precise detection of insider threats. The proposed approaches were evaluated using the CMU CERT Insider Threat Dataset, achieving an AUC of 98.75% and an F1-score of 96.81%. The experimental results demonstrate the effectiveness of the proposed methods, outperforming other state-of-the-art approaches.
一种基于改进Test-Time Training模型的内部威胁检测方法
随着网络和信息系统在各行各业的广泛应用,网络安全问题变得更加突出。在这些担忧中,内部威胁被认为是特别隐蔽和具有破坏性的。内部威胁是指恶意的内部人员利用对网络、系统和数据的特权访问,故意危害组织安全。由于用户行为数据的复杂性和可变性,再加上内部行为的微妙和隐蔽性,检测这些威胁是具有挑战性的。传统的检测方法往往不能同时捕获时间序列数据的长期依赖关系和短期波动,而这对于识别异常行为至关重要。针对这些问题,本文首次在内部威胁检测领域引入了测试时间训练(Test-Time Training, TTT)模型,并提出了一种基于TTT- eca - resnet模型的检测方法。首先,对数据集进行预处理。利用TTT提取特征间的长期依赖关系,有效捕获动态序列变化。残差网络结合有效通道注意机制,提取局部特征模式,捕捉时间序列数据中不同位置之间的关系。最后,采用线性层更精确地检测内部威胁。使用CMU CERT内部威胁数据集对所提出的方法进行了评估,AUC为98.75%,f1得分为96.81%。实验结果证明了所提出方法的有效性,优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信