Experimental research on heat transfer in a molten salt-heat pipe-thermoelectric generator system based on micro-MSR

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Xingwei Chen , Zhizhe Xu , Dai Ye , Yang Zou
{"title":"Experimental research on heat transfer in a molten salt-heat pipe-thermoelectric generator system based on micro-MSR","authors":"Xingwei Chen ,&nbsp;Zhizhe Xu ,&nbsp;Dai Ye ,&nbsp;Yang Zou","doi":"10.1016/j.nucengdes.2025.113911","DOIUrl":null,"url":null,"abstract":"<div><div>The heat pipe-cooled micro molten salt reactor (micro-MSR) utilizes heat pipes for transferring the fission energy produced in the core to thermoelectric generators (TEG). In order to assess the heat transfer performance, an integrated experimental setup comprising a molten salt – heat pipe – thermoelectric generator was established. Experiments were carried out to assess the system’s performance during start-up and operation under various operational conditions. Two different methods of salt addition were tested, revealing that the introduction of liquid molten salt led to temperature fluctuations, while the heat pipe start-up process was influenced by the melting of molten salt during cold start-up. During steady power operation, the system exhibited stability, with natural convection of molten salt in the annular gap enhancing heat transfer. The primary factor affecting thermoelectric conversion efficiency was identified as the thermal resistance between the condensation section of the heat pipe and the TEG. With increasing heating temperatures, the wall temperatures of each part of heat pipe rose accordingly, resulting in improving heat transfer efficiency and thermoelectric conversion. This investigation is expected to offer valuable insights for the start-up and operation of micro-MSRs.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"434 ","pages":"Article 113911"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325000883","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The heat pipe-cooled micro molten salt reactor (micro-MSR) utilizes heat pipes for transferring the fission energy produced in the core to thermoelectric generators (TEG). In order to assess the heat transfer performance, an integrated experimental setup comprising a molten salt – heat pipe – thermoelectric generator was established. Experiments were carried out to assess the system’s performance during start-up and operation under various operational conditions. Two different methods of salt addition were tested, revealing that the introduction of liquid molten salt led to temperature fluctuations, while the heat pipe start-up process was influenced by the melting of molten salt during cold start-up. During steady power operation, the system exhibited stability, with natural convection of molten salt in the annular gap enhancing heat transfer. The primary factor affecting thermoelectric conversion efficiency was identified as the thermal resistance between the condensation section of the heat pipe and the TEG. With increasing heating temperatures, the wall temperatures of each part of heat pipe rose accordingly, resulting in improving heat transfer efficiency and thermoelectric conversion. This investigation is expected to offer valuable insights for the start-up and operation of micro-MSRs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信