{"title":"Shaping quasi-transparent nanotubes into Maximally strong EM scatterers","authors":"Nurkeldi Iznat , Madeniyet Bespayev , Yerassyl Turarov , Constantinos Valagiannopoulos , Konstantinos Kostas","doi":"10.1016/j.enganabound.2025.106153","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of enhancing the electromagnetic (EM) scattering for almost transparent nanotubes via shape modification of their cross section, is studied in this work. An isogeometric analysis approach, in a boundary element method setting, is employed to evaluate the local electric field, which is expressed in terms of the exact same basis functions utilized in the geometric representation of the cylinder boundary. In this way, the overall scattering power becomes computable via proper integration of the far field magnitude around the nanotube and shape optimization can be directly performed with the aim of maximizing the scattering enhancement compared to an equiareal circular nanotube. The optimization framework uses: (i) a hybrid approach combining global optimizers with gradient-based local algorithms for accurately determining the shape at the final stages, (ii) a series of parametric models generating valid non-self-intersecting nanotube shapes, and (iii) an isogeometric-enabled boundary element method solver approximating the value of the electric field with high accuracy. The optimized nanotube shapes give much higher total scattering response than their circular counterparts. In a wide range of operating conditions (such as nanotube’s electric conductivity or cross section area), the optimized shapes assumed a distinct spiky shape which was further studied with respect to the direction of excitation. Apart from boosting scattering for quasi-transparent nanotubes, the developed methodology can be adapted to solve the inverse problem, namely, determining the nanotube shape from its scattering signal, as well as extended to address similar problems with finite arrays of nanotubes comprising EM metasurfaces.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"173 ","pages":"Article 106153"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000414","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of enhancing the electromagnetic (EM) scattering for almost transparent nanotubes via shape modification of their cross section, is studied in this work. An isogeometric analysis approach, in a boundary element method setting, is employed to evaluate the local electric field, which is expressed in terms of the exact same basis functions utilized in the geometric representation of the cylinder boundary. In this way, the overall scattering power becomes computable via proper integration of the far field magnitude around the nanotube and shape optimization can be directly performed with the aim of maximizing the scattering enhancement compared to an equiareal circular nanotube. The optimization framework uses: (i) a hybrid approach combining global optimizers with gradient-based local algorithms for accurately determining the shape at the final stages, (ii) a series of parametric models generating valid non-self-intersecting nanotube shapes, and (iii) an isogeometric-enabled boundary element method solver approximating the value of the electric field with high accuracy. The optimized nanotube shapes give much higher total scattering response than their circular counterparts. In a wide range of operating conditions (such as nanotube’s electric conductivity or cross section area), the optimized shapes assumed a distinct spiky shape which was further studied with respect to the direction of excitation. Apart from boosting scattering for quasi-transparent nanotubes, the developed methodology can be adapted to solve the inverse problem, namely, determining the nanotube shape from its scattering signal, as well as extended to address similar problems with finite arrays of nanotubes comprising EM metasurfaces.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.