Georgios Petmezas , Vasileios E. Papageorgiou , Vassilios Vassilikos , Efstathios Pagourelias , Dimitrios Tachmatzidis , George Tsaklidis , Aggelos K. Katsaggelos , Nicos Maglaveras
{"title":"Enhanced heart failure mortality prediction through model-independent hybrid feature selection and explainable machine learning","authors":"Georgios Petmezas , Vasileios E. Papageorgiou , Vassilios Vassilikos , Efstathios Pagourelias , Dimitrios Tachmatzidis , George Tsaklidis , Aggelos K. Katsaggelos , Nicos Maglaveras","doi":"10.1016/j.jbi.2025.104800","DOIUrl":null,"url":null,"abstract":"<div><div>Heart failure (HF) remains a significant public health challenge with high mortality rates. Machine learning (ML) techniques offer a promising approach to predict HF mortality, potentially improving clinical outcomes. However, the effectiveness of these techniques heavily depends on the quality and relevance of the features used. This study introduces a novel hybrid feature selection methodology that combines Extremely Randomized Trees (Extra-Trees) and non-linear correlation measures to enhance 1-year all-cause mortality prediction in HF patients using echocardiographic and key demographic data. Unlike existing feature selection methods that are often tied to specific ML models and produce inconsistent feature sets across different algorithms, our proposed approach is model-independent, ensuring robustness and generalizability. Moreover, the optimal number of predictive features is identified through loss graph inspection, leading to a compact and highly informative subset of seven features. We trained and evaluated seven widely-used ML models on both the full feature set and the selected subset, finding that most models maintained or improved their predictive performance despite an 80% reduction in features. Model interpretability was enhanced using SHapley Additive exPlanations (SHAP), allowing for a detailed examination of how individual features influence predictions. To further assess its effectiveness, we compared our methodology against widely known feature selection techniques across all seven ML models. The results underscore the superiority of our proposed feature set in accurately predicting HF mortality over conventional methods, offering new opportunities for personalized management strategies based on a streamlined and explainable feature subset.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"163 ","pages":"Article 104800"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure (HF) remains a significant public health challenge with high mortality rates. Machine learning (ML) techniques offer a promising approach to predict HF mortality, potentially improving clinical outcomes. However, the effectiveness of these techniques heavily depends on the quality and relevance of the features used. This study introduces a novel hybrid feature selection methodology that combines Extremely Randomized Trees (Extra-Trees) and non-linear correlation measures to enhance 1-year all-cause mortality prediction in HF patients using echocardiographic and key demographic data. Unlike existing feature selection methods that are often tied to specific ML models and produce inconsistent feature sets across different algorithms, our proposed approach is model-independent, ensuring robustness and generalizability. Moreover, the optimal number of predictive features is identified through loss graph inspection, leading to a compact and highly informative subset of seven features. We trained and evaluated seven widely-used ML models on both the full feature set and the selected subset, finding that most models maintained or improved their predictive performance despite an 80% reduction in features. Model interpretability was enhanced using SHapley Additive exPlanations (SHAP), allowing for a detailed examination of how individual features influence predictions. To further assess its effectiveness, we compared our methodology against widely known feature selection techniques across all seven ML models. The results underscore the superiority of our proposed feature set in accurately predicting HF mortality over conventional methods, offering new opportunities for personalized management strategies based on a streamlined and explainable feature subset.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.