Advanced segmentation method for integrating multi-omics data for early cancer detection

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S.K.B. Sangeetha , Sandeep Kumar Mathivanan , Azath M , Ravinder Beniwal , Naim Ahmad , Wade Ghribi , Saurav Mallik
{"title":"Advanced segmentation method for integrating multi-omics data for early cancer detection","authors":"S.K.B. Sangeetha ,&nbsp;Sandeep Kumar Mathivanan ,&nbsp;Azath M ,&nbsp;Ravinder Beniwal ,&nbsp;Naim Ahmad ,&nbsp;Wade Ghribi ,&nbsp;Saurav Mallik","doi":"10.1016/j.eij.2025.100624","DOIUrl":null,"url":null,"abstract":"<div><div>The global burden of cancer underscores the critical need for early diagnosis. Traditional diagnostic methods, relying on single biomarkers or imaging, often lack comprehensive predictive accuracy. Existing systems often focus on one or two types of omics data, such as genome or transcriptome, but do not comprehensively integrate multiple omics layers (genomic, transcriptomic, proteomic, and epigenomic). This limitation restricts the ability to capture the full biological complexity and heterogeneity of cancer, which can be critical for accurate prediction and understanding of disease mechanisms. We propose an advanced cancer prediction method called Integrated Multi-Omics Segmentation (IMOS), which enhances the processing of multi-omics data by integrating genomic, transcriptomic, proteomic, and epigenomic information. IMOS segments data into biologically meaningful regions, facilitating more precise analysis. IMOS achieves outstanding performance with an average precision of 92 %, sensitivity of 88 %, and specificity of 94 %, outperforming traditional methods by 15 % in precision, 10 % in sensitivity, and 8 % in specificity. Validation using the Genomic Data Commons (GDC) dataset, encompassing diverse cancer types, demonstrated IMOS’s robustness with accuracy of 91 %, sensitivity of 87 %, and specificity of 93 %. The system also excels in clustering evaluation, with a silhouette score ranging from 0.55 to 0.62 and the lowest Davies-Bouldin index achieved with three clusters.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100624"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000179","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The global burden of cancer underscores the critical need for early diagnosis. Traditional diagnostic methods, relying on single biomarkers or imaging, often lack comprehensive predictive accuracy. Existing systems often focus on one or two types of omics data, such as genome or transcriptome, but do not comprehensively integrate multiple omics layers (genomic, transcriptomic, proteomic, and epigenomic). This limitation restricts the ability to capture the full biological complexity and heterogeneity of cancer, which can be critical for accurate prediction and understanding of disease mechanisms. We propose an advanced cancer prediction method called Integrated Multi-Omics Segmentation (IMOS), which enhances the processing of multi-omics data by integrating genomic, transcriptomic, proteomic, and epigenomic information. IMOS segments data into biologically meaningful regions, facilitating more precise analysis. IMOS achieves outstanding performance with an average precision of 92 %, sensitivity of 88 %, and specificity of 94 %, outperforming traditional methods by 15 % in precision, 10 % in sensitivity, and 8 % in specificity. Validation using the Genomic Data Commons (GDC) dataset, encompassing diverse cancer types, demonstrated IMOS’s robustness with accuracy of 91 %, sensitivity of 87 %, and specificity of 93 %. The system also excels in clustering evaluation, with a silhouette score ranging from 0.55 to 0.62 and the lowest Davies-Bouldin index achieved with three clusters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信