Weakly solvating effect optimized hydrated eutectic electrolyte towards reliable zinc anode interfacial chemistry

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xinming Xu , Long Su , Xiao Zhang , Rui Xu , Fei Lu , Liqiang Zheng , Hansen Wang , Chuying Ouyang , Xinpei Gao
{"title":"Weakly solvating effect optimized hydrated eutectic electrolyte towards reliable zinc anode interfacial chemistry","authors":"Xinming Xu ,&nbsp;Long Su ,&nbsp;Xiao Zhang ,&nbsp;Rui Xu ,&nbsp;Fei Lu ,&nbsp;Liqiang Zheng ,&nbsp;Hansen Wang ,&nbsp;Chuying Ouyang ,&nbsp;Xinpei Gao","doi":"10.1016/j.jcis.2025.02.076","DOIUrl":null,"url":null,"abstract":"<div><div>The inherent issues of aqueous Zn-ion batteries, including side reactions and dendrite growth, can be effectively addressed through designing solvation structures enriched with anions to facilitate the formation of an anion-derived solid electrolyte interphase (SEI) layer. Here, the weakly solvating effect is utilized to modulate Zn<sup>2+</sup> solvation structure for constructing an anion-derived SEI layer. Trifluoroacetamide (TFACE), with a specific weak solvating ability, serves as an ideal ligand for preparing hydrated eutectic electrolytes (HEEs) combining the anion-containing solvation structures and high ionic conductivity. The results demonstrate that coordinated anions preferentially decompose and generate an inorganic/organic hybrid SEI layer on the Zn anode, which efficiently suppresses both side reactions and dendritic growth. Such an electrolyte enables assembled Zn//polyaniline (PANI) full cells to process an impressive capacity retention, maintaining 80 % after 3000 cycles at 0.5 A g<sup>−1</sup>. This work provides a fundamental insight into building the anion-derived SEI by the weakly solvating effect and gives a viable route for designing advanced aqueous electrolytes.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 365-375"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725004291","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent issues of aqueous Zn-ion batteries, including side reactions and dendrite growth, can be effectively addressed through designing solvation structures enriched with anions to facilitate the formation of an anion-derived solid electrolyte interphase (SEI) layer. Here, the weakly solvating effect is utilized to modulate Zn2+ solvation structure for constructing an anion-derived SEI layer. Trifluoroacetamide (TFACE), with a specific weak solvating ability, serves as an ideal ligand for preparing hydrated eutectic electrolytes (HEEs) combining the anion-containing solvation structures and high ionic conductivity. The results demonstrate that coordinated anions preferentially decompose and generate an inorganic/organic hybrid SEI layer on the Zn anode, which efficiently suppresses both side reactions and dendritic growth. Such an electrolyte enables assembled Zn//polyaniline (PANI) full cells to process an impressive capacity retention, maintaining 80 % after 3000 cycles at 0.5 A g−1. This work provides a fundamental insight into building the anion-derived SEI by the weakly solvating effect and gives a viable route for designing advanced aqueous electrolytes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信