Evaluating war-induced damage to agricultural land in the Gaza Strip since October 2023 using PlanetScope and SkySat imagery

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
He Yin , Lina Eklund , Dimah Habash , Mazin B. Qumsiyeh , Jamon Van Den Hoek
{"title":"Evaluating war-induced damage to agricultural land in the Gaza Strip since October 2023 using PlanetScope and SkySat imagery","authors":"He Yin ,&nbsp;Lina Eklund ,&nbsp;Dimah Habash ,&nbsp;Mazin B. Qumsiyeh ,&nbsp;Jamon Van Den Hoek","doi":"10.1016/j.srs.2025.100199","DOIUrl":null,"url":null,"abstract":"<div><div>The ongoing 2023 Israel-Hamas War has severe and far-reaching consequences for the people, economy, food security, and environment. The immediate impacts of damage and destruction to cities and farms are apparent in widespread reporting and first-hand accounts from within the Gaza Strip. However, there is a lack of comprehensive assessment of the war's impacts on key Gazan agricultural land that are vital for immediate humanitarian concerns during the ongoing war and for long-term recovery. In the Gaza Strip, agriculture is arguably one of the most important land use systems. However, remote detection of damage to Gazan agriculture is challenged by the diverse agronomic landscapes and small farm sizes. This study uses multi-resolution satellite imagery to monitor damage to tree crops and greenhouses, the most important agricultural land in the Gaza Strip. Our methodology involved several key steps: First, we generated a pre-war cropland map, distinguishing between tree crops (e.g., olives) and greenhouses, using a random forest (RF) model and the Segment Anything Model (SAM) on nominally 3-m PlanetScope and 50-cm Planet SkySat imagery, obtained from 2022 to 2023. Second, we assessed damage to tree crop fields due to the war, employing a harmonic model-based time series analysis using PlanetScope imagery. Third, we assessed the damage to greenhouses by classifying PlanetScope imagery using a random forest model. We performed accuracy assessments on a generated tree crop fields damage map using 1,200 randomly sampled 3 × 3-m areas, and we generated error-adjusted area estimates with a 95% confidence interval. To validate the generated greenhouse damage map, we used a random sampling-based analysis. We found that 64–70% of tree crop fields and 58% of greenhouses had been damaged by 27 September 2024, after almost one year of war in the Gaza Strip. Agricultural land in Gaza City and North Gaza were the most heavily damaged with 90% and 73% of tree crop fields damaged in each governorate, respectively. By the end of 2023, all greenhouses in North Gaza and Gaza City had been damaged. Our damage estimate overall agrees with that from UNOSAT but provides more detailed and accurate information, such as the timing of the damage as well as fine-scale changes. Our results attest to the severe impacts of the Israel-Hamas War on Gaza's agricultural sector with direct relevance for food security and economic recovery needs. Due to the rapid progression of the war, we have made the latest damage maps and area estimates available on GitHub (<span><span>https://github.com/hyinhe/Gaza</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100199"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017225000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing 2023 Israel-Hamas War has severe and far-reaching consequences for the people, economy, food security, and environment. The immediate impacts of damage and destruction to cities and farms are apparent in widespread reporting and first-hand accounts from within the Gaza Strip. However, there is a lack of comprehensive assessment of the war's impacts on key Gazan agricultural land that are vital for immediate humanitarian concerns during the ongoing war and for long-term recovery. In the Gaza Strip, agriculture is arguably one of the most important land use systems. However, remote detection of damage to Gazan agriculture is challenged by the diverse agronomic landscapes and small farm sizes. This study uses multi-resolution satellite imagery to monitor damage to tree crops and greenhouses, the most important agricultural land in the Gaza Strip. Our methodology involved several key steps: First, we generated a pre-war cropland map, distinguishing between tree crops (e.g., olives) and greenhouses, using a random forest (RF) model and the Segment Anything Model (SAM) on nominally 3-m PlanetScope and 50-cm Planet SkySat imagery, obtained from 2022 to 2023. Second, we assessed damage to tree crop fields due to the war, employing a harmonic model-based time series analysis using PlanetScope imagery. Third, we assessed the damage to greenhouses by classifying PlanetScope imagery using a random forest model. We performed accuracy assessments on a generated tree crop fields damage map using 1,200 randomly sampled 3 × 3-m areas, and we generated error-adjusted area estimates with a 95% confidence interval. To validate the generated greenhouse damage map, we used a random sampling-based analysis. We found that 64–70% of tree crop fields and 58% of greenhouses had been damaged by 27 September 2024, after almost one year of war in the Gaza Strip. Agricultural land in Gaza City and North Gaza were the most heavily damaged with 90% and 73% of tree crop fields damaged in each governorate, respectively. By the end of 2023, all greenhouses in North Gaza and Gaza City had been damaged. Our damage estimate overall agrees with that from UNOSAT but provides more detailed and accurate information, such as the timing of the damage as well as fine-scale changes. Our results attest to the severe impacts of the Israel-Hamas War on Gaza's agricultural sector with direct relevance for food security and economic recovery needs. Due to the rapid progression of the war, we have made the latest damage maps and area estimates available on GitHub (https://github.com/hyinhe/Gaza).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信