{"title":"Demystifying deep credit models in e-commerce lending: An explainable approach to consumer creditworthiness","authors":"Chaoqun Wang , Yijun Li , Siyi Wang , Qi Wu","doi":"10.1016/j.knosys.2025.113141","DOIUrl":null,"url":null,"abstract":"<div><div>The ‘Buy Now, Pay Later’ service has revolutionized consumer credit, particularly in e-commerce, by offering flexible options and competitive rates. However, assessing credit risk remains challenging due to limited personal information. Given the availability of consumer online activities, including shopping and credit behaviors, and the necessity for model explanation in high-stakes applications such as credit risk management, we propose an intrinsic explainable model, GLEN (GRU-based Linear Explainable Network), to predict consumers’ credit risk. GLEN leverages the sequential behavior processing capabilities of GRU, along with the transparency of linear regression, to predict credit risk and provide explanations simultaneously. Empirically validated on a real-world e-commerce dataset and a public dataset, GLEN demonstrates a good balance between competitive predictive performance and interpretability, highlighting critical factors for credit risk forecasting. Our findings suggest that past credit status is crucial for credit risk forecasting, and the number of borrowings and repayments is more influential than the amount borrowed or repaid. Additionally, browsing frequency and purchase frequency are also important factors. These insights can provide valuable guidance for platforms to predict credit risk more accurately.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"312 ","pages":"Article 113141"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125001881","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The ‘Buy Now, Pay Later’ service has revolutionized consumer credit, particularly in e-commerce, by offering flexible options and competitive rates. However, assessing credit risk remains challenging due to limited personal information. Given the availability of consumer online activities, including shopping and credit behaviors, and the necessity for model explanation in high-stakes applications such as credit risk management, we propose an intrinsic explainable model, GLEN (GRU-based Linear Explainable Network), to predict consumers’ credit risk. GLEN leverages the sequential behavior processing capabilities of GRU, along with the transparency of linear regression, to predict credit risk and provide explanations simultaneously. Empirically validated on a real-world e-commerce dataset and a public dataset, GLEN demonstrates a good balance between competitive predictive performance and interpretability, highlighting critical factors for credit risk forecasting. Our findings suggest that past credit status is crucial for credit risk forecasting, and the number of borrowings and repayments is more influential than the amount borrowed or repaid. Additionally, browsing frequency and purchase frequency are also important factors. These insights can provide valuable guidance for platforms to predict credit risk more accurately.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.