Numerical investigation of ground reinforced embankments: Structural geometry design

IF 6.2 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Liang Xiao , Qingshan Meng , Shizhan Lv , Ting Yao , Yaxiong Liao
{"title":"Numerical investigation of ground reinforced embankments: Structural geometry design","authors":"Liang Xiao ,&nbsp;Qingshan Meng ,&nbsp;Shizhan Lv ,&nbsp;Ting Yao ,&nbsp;Yaxiong Liao","doi":"10.1016/j.geotexmem.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Ground reinforced embankment (GRE) is a common and efficient rockfall mitigation measure. However, due to the diversity of geometric dimensions and composite components of the embankments worldwide, the design methods have not yet been unified. This article proposes a DEM-based framework for modeling the GREs impacted by rockfalls, and to optimize the structural design by comparing the block-intercepting performance. The numerical model based on MatDEM is validated by restoring the Peila's field tests, and the simulated materials are calibrated by comparing the laboratory test results. The design elements can be determined through simulated impact tests, with the site topography and rockfall trajectory as prerequisite information. The simulation test results show that the structural positions and cross-sectional shapes alter the interaction between rockfalls and embankments, thereby affecting the block-intercepting capacity. Under the impact of high-energy blocks, the characteristic of structural failure is that the extrusion of the downhill face is greater than the displacement of the uphill face, which can be used as a criteria to determine the reasonable design elements. The proposed framework can be applied to an actual site and maximize the cost-benefit performance of design depending on the site space and budget conditions.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 3","pages":"Pages 780-797"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000160","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ground reinforced embankment (GRE) is a common and efficient rockfall mitigation measure. However, due to the diversity of geometric dimensions and composite components of the embankments worldwide, the design methods have not yet been unified. This article proposes a DEM-based framework for modeling the GREs impacted by rockfalls, and to optimize the structural design by comparing the block-intercepting performance. The numerical model based on MatDEM is validated by restoring the Peila's field tests, and the simulated materials are calibrated by comparing the laboratory test results. The design elements can be determined through simulated impact tests, with the site topography and rockfall trajectory as prerequisite information. The simulation test results show that the structural positions and cross-sectional shapes alter the interaction between rockfalls and embankments, thereby affecting the block-intercepting capacity. Under the impact of high-energy blocks, the characteristic of structural failure is that the extrusion of the downhill face is greater than the displacement of the uphill face, which can be used as a criteria to determine the reasonable design elements. The proposed framework can be applied to an actual site and maximize the cost-benefit performance of design depending on the site space and budget conditions.
地基加筋土堤防的数值研究:结构几何设计
地基加筋路堤是一种常见而有效的岩崩防治措施。然而,由于世界范围内堤防的几何尺寸和复合构件的多样性,设计方法尚未统一。本文提出了一种基于dem的框架来模拟受落石冲击的GREs,并通过比较截块性能来优化结构设计。通过恢复Peila的现场试验验证了基于MatDEM的数值模型,并通过对比实验室试验结果对模拟材料进行了校准。设计要素可以通过模拟冲击试验确定,以场地地形和落石轨迹为前提信息。模拟试验结果表明,构筑物的位置和断面形状改变了落石与路堤之间的相互作用,从而影响了拦阻能力。在高能块体冲击下,结构破坏的特点是下坡面的挤压大于上坡面的位移,可以此作为确定合理设计要素的标准。建议的框架可以应用于实际场地,并根据场地空间和预算条件最大化设计的成本效益表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信