CIDM: A comprehensive inpainting diffusion model for missing weather radar data with knowledge guidance

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Wei Zhang , Xinyu Zhang , Junyu Dong , Xiaojiang Song , Renbo Pang
{"title":"CIDM: A comprehensive inpainting diffusion model for missing weather radar data with knowledge guidance","authors":"Wei Zhang ,&nbsp;Xinyu Zhang ,&nbsp;Junyu Dong ,&nbsp;Xiaojiang Song ,&nbsp;Renbo Pang","doi":"10.1016/j.isprsjprs.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing data gaps in meteorological radar scan regions remains a significant challenge. Existing radar data recovery methods tend to perform poorly under different types of missing data scenarios, often due to over-smoothing. The actual scenarios represented by radar data are complex and diverse, making it difficult to simulate missing data. Recent developments in generative models have yielded new solutions for the problem of missing data in complex scenarios. Here, we propose a comprehensive inpainting diffusion model (CIDM) for weather radar data, which improves the sampling approach of the original diffusion model. This method utilises prior knowledge from known regions to guide the generation of missing information. The CIDM formalises domain knowledge into generative models, treating the problem of weather radar completion as a generative task, eliminating the need for complex data preprocessing. During the inference phase, prior knowledge of known regions guides the process and incorporates domain knowledge learned by the model to generate information for missing regions, thus supporting radar data recovery in scenarios with arbitrary missing data. Experiments were conducted on various missing data scenarios using Multi-Radar/MultiSensor System data sourced from the National Oceanic and Atmospheric Administration, and the results were compared with those of traditional and deep learning radar restoration methods. Compared with these methods, the CIDM demonstrated superior recovery performance for various missing data scenarios, particularly those with extreme amounts of missing data, in which the restoration accuracy was improved by 5%–35%. These results indicate the significant potential of the CIDM for quantitative applications. The proposed method showcases the capability of generative models in creating fine-grained data for remote sensing applications.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"221 ","pages":"Pages 299-309"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000450","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing data gaps in meteorological radar scan regions remains a significant challenge. Existing radar data recovery methods tend to perform poorly under different types of missing data scenarios, often due to over-smoothing. The actual scenarios represented by radar data are complex and diverse, making it difficult to simulate missing data. Recent developments in generative models have yielded new solutions for the problem of missing data in complex scenarios. Here, we propose a comprehensive inpainting diffusion model (CIDM) for weather radar data, which improves the sampling approach of the original diffusion model. This method utilises prior knowledge from known regions to guide the generation of missing information. The CIDM formalises domain knowledge into generative models, treating the problem of weather radar completion as a generative task, eliminating the need for complex data preprocessing. During the inference phase, prior knowledge of known regions guides the process and incorporates domain knowledge learned by the model to generate information for missing regions, thus supporting radar data recovery in scenarios with arbitrary missing data. Experiments were conducted on various missing data scenarios using Multi-Radar/MultiSensor System data sourced from the National Oceanic and Atmospheric Administration, and the results were compared with those of traditional and deep learning radar restoration methods. Compared with these methods, the CIDM demonstrated superior recovery performance for various missing data scenarios, particularly those with extreme amounts of missing data, in which the restoration accuracy was improved by 5%–35%. These results indicate the significant potential of the CIDM for quantitative applications. The proposed method showcases the capability of generative models in creating fine-grained data for remote sensing applications.
基于知识指导的气象雷达数据缺失的综合绘制扩散模型
解决气象雷达扫描区域的数据缺口仍然是一项重大挑战。现有的雷达数据恢复方法往往在不同类型的丢失数据场景下表现不佳,通常是由于过度平滑。雷达数据所代表的实际场景复杂多样,为模拟缺失数据带来了困难。生成模型的最新发展为复杂场景中丢失数据的问题提供了新的解决方案。本文提出了一种气象雷达数据的综合扩散模型(CIDM),改进了原始扩散模型的采样方法。该方法利用已知区域的先验知识来指导缺失信息的生成。CIDM将领域知识形式化为生成模型,将气象雷达完成问题视为生成任务,消除了复杂数据预处理的需要。在推理阶段,已知区域的先验知识指导过程,并结合模型学习到的领域知识生成缺失区域的信息,从而支持在任意缺失数据场景下的雷达数据恢复。利用来自美国国家海洋和大气管理局的多雷达/多传感器系统数据,在多种缺失数据场景下进行了实验,并将实验结果与传统和深度学习雷达恢复方法进行了比较。与这些方法相比,CIDM在各种丢失数据场景下表现出了优越的恢复性能,特别是在丢失数据非常多的情况下,恢复精度提高了5%-35%。这些结果表明CIDM在定量应用方面具有巨大的潜力。该方法展示了生成模型在为遥感应用创建细粒度数据方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信