A novel multi-level hierarchy optimization algorithm for pipeline inner detector speed control

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinze Liu , Jian Feng , Huaguang Zhang , Shengxiang Yang
{"title":"A novel multi-level hierarchy optimization algorithm for pipeline inner detector speed control","authors":"Jinze Liu ,&nbsp;Jian Feng ,&nbsp;Huaguang Zhang ,&nbsp;Shengxiang Yang","doi":"10.1016/j.neucom.2025.129715","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel nature-inspired algorithm called Multi-Level Hierarchy Optimization (MLHO) for solving optimization problems over continuous space. The MLHO algorithm is inspired by the hierarchy of nature, especially the hierarchy of biological populations. The entire algorithm structure is divided into four levels for iterative optimization, and the work of each level is global direction guidance, optimization-seeking task allocation, local optimal exploration, and broad domain exploration. Differential variation strategy and dynamic inertia factor are also designed to solve the problem of decreasing population diversity and slow convergence speed at the late stage of evolution. In order to validate and analyze the performance of MLHO, numerical experiments were conducted on benchmark problems in each dimension of CEC'20. In addition, comparisons with 4 state-of-the-art (SOTA) algorithms are executed. The results show that the performance of MLHO is significantly superior to, or at least comparable to the SOTA algorithms. At the same time, the feasibility and effectiveness of MLHO are also demonstrated for the speed control problem of the pipeline inner detector.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"627 ","pages":"Article 129715"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122500387X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel nature-inspired algorithm called Multi-Level Hierarchy Optimization (MLHO) for solving optimization problems over continuous space. The MLHO algorithm is inspired by the hierarchy of nature, especially the hierarchy of biological populations. The entire algorithm structure is divided into four levels for iterative optimization, and the work of each level is global direction guidance, optimization-seeking task allocation, local optimal exploration, and broad domain exploration. Differential variation strategy and dynamic inertia factor are also designed to solve the problem of decreasing population diversity and slow convergence speed at the late stage of evolution. In order to validate and analyze the performance of MLHO, numerical experiments were conducted on benchmark problems in each dimension of CEC'20. In addition, comparisons with 4 state-of-the-art (SOTA) algorithms are executed. The results show that the performance of MLHO is significantly superior to, or at least comparable to the SOTA algorithms. At the same time, the feasibility and effectiveness of MLHO are also demonstrated for the speed control problem of the pipeline inner detector.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信