Uttam Pyakurel , Yawei Zhang , Ryan Sabounchi , Farhang Bayat , Sébastien Brousmiche , Curtis Bryant , Nancy Mendenhall , Perry Johnson , Cem Altunbas
{"title":"Investigation of 2D anti-scatter grid implementation in a gantry-mounted cone beam computed tomography system for proton therapy","authors":"Uttam Pyakurel , Yawei Zhang , Ryan Sabounchi , Farhang Bayat , Sébastien Brousmiche , Curtis Bryant , Nancy Mendenhall , Perry Johnson , Cem Altunbas","doi":"10.1016/j.phro.2025.100730","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Robust scatter mitigation by 2D anti-scatter grids (2D-ASG) in proton therapy cone beam computed tomography (CBCT) may improve target visualization and computed tomography (CT) number fidelity, allowing online dose verifications and plan adaptations. However, grid artifact-free implementation of 2D-ASG depends on the CBCT system characteristics. Thus, we investigated the feasibility of 2D-ASG implementation in a proton therapy gantry-mounted CBCT system and evaluated its impact on image quality.</div></div><div><h3>Materials and methods</h3><div>A prototype 2D-ASG and a grid support platform were developed for a proton therapy CBCT system with a 340 cm source to imager distance. The effect of gantry flex on 2D-ASG’s wall shadows and scan-to-scan reproducibility of 2D-ASG’s wall shadows were evaluated. Experiments were conducted to assess 2D-ASG’s wall shadow suppression and the effect of 2D-ASG on image quality.</div></div><div><h3>Results</h3><div>While maximum displacement in 2D-ASG wall shadows was 103 µm during gantry rotation, the drift from baseline over 3 months was 8 µm and 1 µm in the transverse and axial directions. 2D-ASG shadows were successfully suppressed in CBCT images. With 2D-ASG, maximum Hounsfield Unit (HU) nonuniformity decreased from 134 to 45 HU, contrast-to-noise ratio (CNR) increased by a factor of 2.5, and HU errors were reduced from 34 % to 5 %.</div></div><div><h3>Conclusions</h3><div>Proton therapy gantry flex was highly reproducible and did not noticeably affect 2D-ASG wall shadow suppression in CBCT images, supporting its feasibility in proton therapy CBCT system. Improved CT accuracy and artifact reduction with 2D-ASG could enhance CBCT-based proton therapy dose calculations.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100730"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose
Robust scatter mitigation by 2D anti-scatter grids (2D-ASG) in proton therapy cone beam computed tomography (CBCT) may improve target visualization and computed tomography (CT) number fidelity, allowing online dose verifications and plan adaptations. However, grid artifact-free implementation of 2D-ASG depends on the CBCT system characteristics. Thus, we investigated the feasibility of 2D-ASG implementation in a proton therapy gantry-mounted CBCT system and evaluated its impact on image quality.
Materials and methods
A prototype 2D-ASG and a grid support platform were developed for a proton therapy CBCT system with a 340 cm source to imager distance. The effect of gantry flex on 2D-ASG’s wall shadows and scan-to-scan reproducibility of 2D-ASG’s wall shadows were evaluated. Experiments were conducted to assess 2D-ASG’s wall shadow suppression and the effect of 2D-ASG on image quality.
Results
While maximum displacement in 2D-ASG wall shadows was 103 µm during gantry rotation, the drift from baseline over 3 months was 8 µm and 1 µm in the transverse and axial directions. 2D-ASG shadows were successfully suppressed in CBCT images. With 2D-ASG, maximum Hounsfield Unit (HU) nonuniformity decreased from 134 to 45 HU, contrast-to-noise ratio (CNR) increased by a factor of 2.5, and HU errors were reduced from 34 % to 5 %.
Conclusions
Proton therapy gantry flex was highly reproducible and did not noticeably affect 2D-ASG wall shadow suppression in CBCT images, supporting its feasibility in proton therapy CBCT system. Improved CT accuracy and artifact reduction with 2D-ASG could enhance CBCT-based proton therapy dose calculations.