Investigation of 2D anti-scatter grid implementation in a gantry-mounted cone beam computed tomography system for proton therapy

IF 3.4 Q2 ONCOLOGY
Uttam Pyakurel , Yawei Zhang , Ryan Sabounchi , Farhang Bayat , Sébastien Brousmiche , Curtis Bryant , Nancy Mendenhall , Perry Johnson , Cem Altunbas
{"title":"Investigation of 2D anti-scatter grid implementation in a gantry-mounted cone beam computed tomography system for proton therapy","authors":"Uttam Pyakurel ,&nbsp;Yawei Zhang ,&nbsp;Ryan Sabounchi ,&nbsp;Farhang Bayat ,&nbsp;Sébastien Brousmiche ,&nbsp;Curtis Bryant ,&nbsp;Nancy Mendenhall ,&nbsp;Perry Johnson ,&nbsp;Cem Altunbas","doi":"10.1016/j.phro.2025.100730","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Robust scatter mitigation by 2D anti-scatter grids (2D-ASG) in proton therapy cone beam computed tomography (CBCT) may improve target visualization and computed tomography (CT) number fidelity, allowing online dose verifications and plan adaptations. However, grid artifact-free implementation of 2D-ASG depends on the CBCT system characteristics. Thus, we investigated the feasibility of 2D-ASG implementation in a proton therapy gantry-mounted CBCT system and evaluated its impact on image quality.</div></div><div><h3>Materials and methods</h3><div>A prototype 2D-ASG and a grid support platform were developed for a proton therapy CBCT system with a 340 cm source to imager distance. The effect of gantry flex on 2D-ASG’s wall shadows and scan-to-scan reproducibility of 2D-ASG’s wall shadows were evaluated. Experiments were conducted to assess 2D-ASG’s wall shadow suppression and the effect of 2D-ASG on image quality.</div></div><div><h3>Results</h3><div>While maximum displacement in 2D-ASG wall shadows was 103 µm during gantry rotation, the drift from baseline over 3 months was 8 µm and 1 µm in the transverse and axial directions. 2D-ASG shadows were successfully suppressed in CBCT images. With 2D-ASG, maximum Hounsfield Unit (HU) nonuniformity decreased from 134 to 45 HU, contrast-to-noise ratio (CNR) increased by a factor of 2.5, and HU errors were reduced from 34 % to 5 %.</div></div><div><h3>Conclusions</h3><div>Proton therapy gantry flex was highly reproducible and did not noticeably affect 2D-ASG wall shadow suppression in CBCT images, supporting its feasibility in proton therapy CBCT system. Improved CT accuracy and artifact reduction with 2D-ASG could enhance CBCT-based proton therapy dose calculations.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100730"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Robust scatter mitigation by 2D anti-scatter grids (2D-ASG) in proton therapy cone beam computed tomography (CBCT) may improve target visualization and computed tomography (CT) number fidelity, allowing online dose verifications and plan adaptations. However, grid artifact-free implementation of 2D-ASG depends on the CBCT system characteristics. Thus, we investigated the feasibility of 2D-ASG implementation in a proton therapy gantry-mounted CBCT system and evaluated its impact on image quality.

Materials and methods

A prototype 2D-ASG and a grid support platform were developed for a proton therapy CBCT system with a 340 cm source to imager distance. The effect of gantry flex on 2D-ASG’s wall shadows and scan-to-scan reproducibility of 2D-ASG’s wall shadows were evaluated. Experiments were conducted to assess 2D-ASG’s wall shadow suppression and the effect of 2D-ASG on image quality.

Results

While maximum displacement in 2D-ASG wall shadows was 103 µm during gantry rotation, the drift from baseline over 3 months was 8 µm and 1 µm in the transverse and axial directions. 2D-ASG shadows were successfully suppressed in CBCT images. With 2D-ASG, maximum Hounsfield Unit (HU) nonuniformity decreased from 134 to 45 HU, contrast-to-noise ratio (CNR) increased by a factor of 2.5, and HU errors were reduced from 34 % to 5 %.

Conclusions

Proton therapy gantry flex was highly reproducible and did not noticeably affect 2D-ASG wall shadow suppression in CBCT images, supporting its feasibility in proton therapy CBCT system. Improved CT accuracy and artifact reduction with 2D-ASG could enhance CBCT-based proton therapy dose calculations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信