Thienopyrimidine: A promising scaffold in the development of kinase inhibitors with anticancer activities

IF 3.3 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yun-He Liu , Zi-Yue Wang , Yi-Fei Du , Xuan-Han Liu , Jin-Bo Niu , Jian Song , Cheng-Yun Jin , Sai-Yang Zhang
{"title":"Thienopyrimidine: A promising scaffold in the development of kinase inhibitors with anticancer activities","authors":"Yun-He Liu ,&nbsp;Zi-Yue Wang ,&nbsp;Yi-Fei Du ,&nbsp;Xuan-Han Liu ,&nbsp;Jin-Bo Niu ,&nbsp;Jian Song ,&nbsp;Cheng-Yun Jin ,&nbsp;Sai-Yang Zhang","doi":"10.1016/j.bmc.2025.118109","DOIUrl":null,"url":null,"abstract":"<div><div>Protein kinases represent a highly promising drug target, with over 80 drugs that target about two dozen different protein kinases have been approved by the US FDA, particularly in cancer treatment. Over the past decades, the unique structural characteristics of the thienopyrimidine ring system provide an adaptive platform for designing potent anticancer agents, especially various kinase inhibitors, which has attracted widespread attention. Some of these thienopyrimidines as anticancer kinase inhibitors have already been marketed or are currently undergoing clinical/preclinical studies for the treatment of cancers, such as Olmutinib, Pictilisib, SNS-314, PF-03758309, and Fimepinostat, highlighting the substantial advantages of the thienopyrimidine scaffold in the discovery of anticancer agents. This article reviews the discovery, activity, and structure–activity relationships of antitumor kinase inhibitors based on the thienopyrimidine scaffold, and partially discusses the binding modes between thienopyrimidine derivatives and their kinase targets. By elucidating the application of thienopyrimidine derivatives as anticancer kinase inhibitors, this review aims to provide new perspectives for the development of more effective and novel kinase inhibitors.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"121 ","pages":"Article 118109"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625000501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein kinases represent a highly promising drug target, with over 80 drugs that target about two dozen different protein kinases have been approved by the US FDA, particularly in cancer treatment. Over the past decades, the unique structural characteristics of the thienopyrimidine ring system provide an adaptive platform for designing potent anticancer agents, especially various kinase inhibitors, which has attracted widespread attention. Some of these thienopyrimidines as anticancer kinase inhibitors have already been marketed or are currently undergoing clinical/preclinical studies for the treatment of cancers, such as Olmutinib, Pictilisib, SNS-314, PF-03758309, and Fimepinostat, highlighting the substantial advantages of the thienopyrimidine scaffold in the discovery of anticancer agents. This article reviews the discovery, activity, and structure–activity relationships of antitumor kinase inhibitors based on the thienopyrimidine scaffold, and partially discusses the binding modes between thienopyrimidine derivatives and their kinase targets. By elucidating the application of thienopyrimidine derivatives as anticancer kinase inhibitors, this review aims to provide new perspectives for the development of more effective and novel kinase inhibitors.

Abstract Image

噻吩嘧啶:具有抗癌活性的激酶抑制剂的一个有前途的支架
蛋白激酶是一种非常有前途的药物靶点,美国FDA已经批准了80多种针对大约24种不同蛋白激酶的药物,特别是在癌症治疗中。在过去的几十年里,噻吩嘧啶环体系独特的结构特征为设计有效的抗癌药物,特别是各种激酶抑制剂提供了一个自适应平台,引起了广泛的关注。其中一些噻吩嘧啶作为抗癌激酶抑制剂已经上市或正在进行临床/临床前研究,用于治疗癌症,如Olmutinib, Pictilisib, SNS-314, PF-03758309和Fimepinostat,突出了噻吩嘧啶支架在发现抗癌药物方面的巨大优势。本文综述了基于噻吩嘧啶支架的抗肿瘤激酶抑制剂的发现、活性和构效关系,并部分讨论了噻吩嘧啶衍生物与其激酶靶点的结合模式。本文通过对噻吩嘧啶衍生物在抗癌激酶抑制剂方面的应用进行综述,旨在为开发更有效的新型激酶抑制剂提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioorganic & Medicinal Chemistry
Bioorganic & Medicinal Chemistry 医学-生化与分子生物学
CiteScore
6.80
自引率
2.90%
发文量
413
审稿时长
17 days
期刊介绍: Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides. The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信