Translaminar fracture and shear properties of aluminum-mesh hybrid structures for high performance applications

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Abdel-Halim Saber Salem Said , A.M. Sadoun , Amr Seif , Mashhour A. Alazwari , Waleed Mohammed Abdelfattah , I.M.R. Najjar
{"title":"Translaminar fracture and shear properties of aluminum-mesh hybrid structures for high performance applications","authors":"Abdel-Halim Saber Salem Said ,&nbsp;A.M. Sadoun ,&nbsp;Amr Seif ,&nbsp;Mashhour A. Alazwari ,&nbsp;Waleed Mohammed Abdelfattah ,&nbsp;I.M.R. Najjar","doi":"10.1016/j.tafmec.2025.104874","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating metals with fiber enhances the efficiency and affordability of composite structures. Furthermore, metal reinforcement improves the material’s resistance to fracture by acting as crack arresters, closing cracks and preventing them from spreading. Thus, this study’s main goal is to conduct a comprehensive evaluation of the mechanical performance of hybrid structures incorporating glass fiber with aluminum mesh. Recognizing the critical role of fiber arrangement in determining the mechanical properties of laminated composites, hybrid specimens with Al-wire mesh positioned at the surface (GAL1) and at the core (GAL2), stacked with glass fibers embedded in epoxy resin, were fabricated using the hand lay-up method and compared to pure glass fiber-reinforced composite (PG). The results showed notable improvement: GAL1 enhanced fracture toughness by 6 % and shear strength by 29.95 % relative to PG, while also exhibiting better damage tolerance and absorbing energy under bearing loads with a strain increased by 5 %. Maximum compressive and ILS strength was attained by GAL2, which outperformed PG by 22.95 % and 31.71 %, respectively. Furthermore, it produced adequate load distribution but localized damaged surfaces. These results emphasize the promise of Al-mesh hybrid structures for robust, lightweight applications in structural and automotive sectors.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"137 ","pages":"Article 104874"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225000321","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating metals with fiber enhances the efficiency and affordability of composite structures. Furthermore, metal reinforcement improves the material’s resistance to fracture by acting as crack arresters, closing cracks and preventing them from spreading. Thus, this study’s main goal is to conduct a comprehensive evaluation of the mechanical performance of hybrid structures incorporating glass fiber with aluminum mesh. Recognizing the critical role of fiber arrangement in determining the mechanical properties of laminated composites, hybrid specimens with Al-wire mesh positioned at the surface (GAL1) and at the core (GAL2), stacked with glass fibers embedded in epoxy resin, were fabricated using the hand lay-up method and compared to pure glass fiber-reinforced composite (PG). The results showed notable improvement: GAL1 enhanced fracture toughness by 6 % and shear strength by 29.95 % relative to PG, while also exhibiting better damage tolerance and absorbing energy under bearing loads with a strain increased by 5 %. Maximum compressive and ILS strength was attained by GAL2, which outperformed PG by 22.95 % and 31.71 %, respectively. Furthermore, it produced adequate load distribution but localized damaged surfaces. These results emphasize the promise of Al-mesh hybrid structures for robust, lightweight applications in structural and automotive sectors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信