Needle-type and spherical-shaped hydroxyapatite nanoparticles modified with graphene nanoplatelets and silver nanoparticles blended cementitious composites

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Barış Şimşek , Tayfun Uygunoğlu , Özge Bildi Ceran , Ugur Fidan
{"title":"Needle-type and spherical-shaped hydroxyapatite nanoparticles modified with graphene nanoplatelets and silver nanoparticles blended cementitious composites","authors":"Barış Şimşek ,&nbsp;Tayfun Uygunoğlu ,&nbsp;Özge Bildi Ceran ,&nbsp;Ugur Fidan","doi":"10.1016/j.matchemphys.2025.130534","DOIUrl":null,"url":null,"abstract":"<div><div>Biocompatible hydroxyapatite nanoparticles (HPs) could be an important candidate for designing sustainable building materials due to the availability of abundant natural resources. HPs modified with conductive nanoparticles could be promising sustainable construction materials for smart buildings. This study investigated the mechanical and electromechanical properties of needle-type and spherical-shaped HPs modified with graphene nanoplatelets (NGP) and silver nanoparticles (AgNPs)-cement pastes. The results show that the HP concentration was a key factor in the increase of mechanical properties, while the hybridization of NGP and AgNPs with HPs plays a key role in improving the electromechanical properties of cement pastes. The success of the needle-type structure under flexural loading was attributed to the better adhesion of the 1D shape to the cement mortar. Remarkable average stress sensitivity of −4.55 % MPa<sup>−1</sup> and −8.78 % MPa<sup>−1</sup> were obtained by the samples of pH10G01Ag01 and nH10G01Ag01, respectively, with a linearity error below 0.1 %. A stress sensitivity of −4.12 % MPa<sup>−1</sup> was achieved with nH10G01Ag01, while the linear error of 0.25 % was still relatively high. It is concluded that the needle-type HPs behave as an adsorption center for NGP and AGNPs and provide an effective conductive path and overlapping nanoparticles to improve the sensing properties of cement mortars. The main effect plots show a significant effect of AgNPs support on the increase in mechanical and electromechanical properties of HPs-cement pastes by gap-filling and molecular interaction ability of AGNPs.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"335 ","pages":"Article 130534"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425001804","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biocompatible hydroxyapatite nanoparticles (HPs) could be an important candidate for designing sustainable building materials due to the availability of abundant natural resources. HPs modified with conductive nanoparticles could be promising sustainable construction materials for smart buildings. This study investigated the mechanical and electromechanical properties of needle-type and spherical-shaped HPs modified with graphene nanoplatelets (NGP) and silver nanoparticles (AgNPs)-cement pastes. The results show that the HP concentration was a key factor in the increase of mechanical properties, while the hybridization of NGP and AgNPs with HPs plays a key role in improving the electromechanical properties of cement pastes. The success of the needle-type structure under flexural loading was attributed to the better adhesion of the 1D shape to the cement mortar. Remarkable average stress sensitivity of −4.55 % MPa−1 and −8.78 % MPa−1 were obtained by the samples of pH10G01Ag01 and nH10G01Ag01, respectively, with a linearity error below 0.1 %. A stress sensitivity of −4.12 % MPa−1 was achieved with nH10G01Ag01, while the linear error of 0.25 % was still relatively high. It is concluded that the needle-type HPs behave as an adsorption center for NGP and AGNPs and provide an effective conductive path and overlapping nanoparticles to improve the sensing properties of cement mortars. The main effect plots show a significant effect of AgNPs support on the increase in mechanical and electromechanical properties of HPs-cement pastes by gap-filling and molecular interaction ability of AGNPs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信