PFOS-Induced Perturbations in Trophoblast Functions through the Oip5os1/miR-155/Rnd3 Axis in PE

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Xiaomin Ye, Peiqu Zhong, Qiongfang Chen, Dongmei Zhou, Jieyu Luo, Youcai Liang, Jiayuan Zhang and Lijian Zhao*, 
{"title":"PFOS-Induced Perturbations in Trophoblast Functions through the Oip5os1/miR-155/Rnd3 Axis in PE","authors":"Xiaomin Ye,&nbsp;Peiqu Zhong,&nbsp;Qiongfang Chen,&nbsp;Dongmei Zhou,&nbsp;Jieyu Luo,&nbsp;Youcai Liang,&nbsp;Jiayuan Zhang and Lijian Zhao*,&nbsp;","doi":"10.1021/acs.chemrestox.4c0018410.1021/acs.chemrestox.4c00184","DOIUrl":null,"url":null,"abstract":"<p >The widespread use of perfluorooctanesulfonic acid (PFOS) has raised concerns regarding its potential on pregnant women, particularly in relation to the development of pre-eclampsia (PE). This study investigates the impact of PFOS exposure on the LncRNA/Rnd3 axis in pregnant mice and its association with trophoblast cell functions in PE. Bioinformatics analysis revealed PFOS-related gene alterations in PE, with pathways enriched in apoptotic signaling and cytokine interactions. Experimental findings showed the downregulation of Oip5os1 and Rnd3, along with the upregulation of miR-155, affecting trophoblast behavior. Animal experiments confirmed that PFOS-induced gene expression changes are linked to PE progression. PFOS exposure impairs trophoblast proliferation and migration via the Oip5os1/miR-155/Rnd3 axis, contributing to PE development.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 2","pages":"236–251 236–251"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of perfluorooctanesulfonic acid (PFOS) has raised concerns regarding its potential on pregnant women, particularly in relation to the development of pre-eclampsia (PE). This study investigates the impact of PFOS exposure on the LncRNA/Rnd3 axis in pregnant mice and its association with trophoblast cell functions in PE. Bioinformatics analysis revealed PFOS-related gene alterations in PE, with pathways enriched in apoptotic signaling and cytokine interactions. Experimental findings showed the downregulation of Oip5os1 and Rnd3, along with the upregulation of miR-155, affecting trophoblast behavior. Animal experiments confirmed that PFOS-induced gene expression changes are linked to PE progression. PFOS exposure impairs trophoblast proliferation and migration via the Oip5os1/miR-155/Rnd3 axis, contributing to PE development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信