Precoder Design for User-Centric Network Massive MIMO With Matrix Manifold Optimization

Rui Sun;Li You;An-An Lu;Chen Sun;Xiqi Gao;Xiang-Gen Xia
{"title":"Precoder Design for User-Centric Network Massive MIMO With Matrix Manifold Optimization","authors":"Rui Sun;Li You;An-An Lu;Chen Sun;Xiqi Gao;Xiang-Gen Xia","doi":"10.1109/JSAC.2025.3536504","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the precoder design for user-centric network (UCN) massive multiple-input multiple-output (mMIMO) downlink with matrix manifold optimization. In UCN mMIMO systems, each user terminal (UT) is served by a subset of base stations (BSs) instead of all the BSs, facilitating the implementation of the system and lowering the dimension of the precoders to be designed. By proving that the precoder set satisfying the per-BS power constraints forms a Riemannian submanifold of a linear product manifold, we transform the constrained precoder design problem in Euclidean space to an unconstrained one on the Riemannian submanifold. Riemannian ingredients, including orthogonal projection, Riemannian gradient, retraction and vector transport, of the problem on the Riemannian submanifold are further derived, with which the Riemannian conjugate gradient (RCG) design method is proposed for solving the unconstrained problem. The proposed method avoids the inverses of large dimensional matrices, which is beneficial in practice. The complexity analyses show the high computational efficiency of RCG precoder design. Simulation results demonstrate the numerical superiority of the proposed precoder design and the high efficiency of the UCN mMIMO system.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 3","pages":"705-719"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10886952/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the precoder design for user-centric network (UCN) massive multiple-input multiple-output (mMIMO) downlink with matrix manifold optimization. In UCN mMIMO systems, each user terminal (UT) is served by a subset of base stations (BSs) instead of all the BSs, facilitating the implementation of the system and lowering the dimension of the precoders to be designed. By proving that the precoder set satisfying the per-BS power constraints forms a Riemannian submanifold of a linear product manifold, we transform the constrained precoder design problem in Euclidean space to an unconstrained one on the Riemannian submanifold. Riemannian ingredients, including orthogonal projection, Riemannian gradient, retraction and vector transport, of the problem on the Riemannian submanifold are further derived, with which the Riemannian conjugate gradient (RCG) design method is proposed for solving the unconstrained problem. The proposed method avoids the inverses of large dimensional matrices, which is beneficial in practice. The complexity analyses show the high computational efficiency of RCG precoder design. Simulation results demonstrate the numerical superiority of the proposed precoder design and the high efficiency of the UCN mMIMO system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信