{"title":"Fusion4DAL: Offline Multi-modal 3D Object Detection for 4D Auto-labeling","authors":"Zhiyuan Yang, Xuekuan Wang, Wei Zhang, Xiao Tan, Jincheng Lu, Jingdong Wang, Errui Ding, Cairong Zhao","doi":"10.1007/s11263-025-02370-1","DOIUrl":null,"url":null,"abstract":"<p>Integrating LiDAR and camera information has been a widely adopted approach for 3D object detection in autonomous driving. Nevertheless, the unexplored potential of multi-modal fusion remains in the realm of offline 4D detection. We experimentally find that the root lies in two reasons: (1) the sparsity of point clouds poses a challenge in extracting long-term image features and thereby results in information loss. (2) some of the LiDAR points may be obstructed in the image, leading to incorrect image features. To tackle these problems, we first propose a simple yet effective offline multi-modal 3D object detection method, named Fusion4DAL, for 4D auto-labeling with long-term multi-modal sequences. Specifically, in order to address the sparsity of points within objects, we propose a multi-modal mixed feature fusion module (MMFF). In the MMFF module, we introduce virtual points based on a dense 3D grid and combine them with real LiDAR points. The mixed points are then utilized to extract dense point-level image features, thereby enhancing multi-modal feature fusion without being constrained by the sparse real LiDAR points. As to the obstructed LiDAR points, we leverage the occlusion relationship among objects to ensure depth consistency between LiDAR points and their corresponding depth feature maps, thus filtering out erroneous image features. In addition, we define a virtual point loss (VP Loss) to distinguish different types of mixed points and preserve the geometric shape of objects. Furthermore, in order to promote long-term receptive field and capture finer-grained features, we propose a global point attention decoder with a box-level self-attention module and a global point attention module. Finally, comprehensive experiments show that Fusion4DAL outperforms state-of-the-art offline 3D detection methods on nuScenes and Waymo dataset.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02370-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating LiDAR and camera information has been a widely adopted approach for 3D object detection in autonomous driving. Nevertheless, the unexplored potential of multi-modal fusion remains in the realm of offline 4D detection. We experimentally find that the root lies in two reasons: (1) the sparsity of point clouds poses a challenge in extracting long-term image features and thereby results in information loss. (2) some of the LiDAR points may be obstructed in the image, leading to incorrect image features. To tackle these problems, we first propose a simple yet effective offline multi-modal 3D object detection method, named Fusion4DAL, for 4D auto-labeling with long-term multi-modal sequences. Specifically, in order to address the sparsity of points within objects, we propose a multi-modal mixed feature fusion module (MMFF). In the MMFF module, we introduce virtual points based on a dense 3D grid and combine them with real LiDAR points. The mixed points are then utilized to extract dense point-level image features, thereby enhancing multi-modal feature fusion without being constrained by the sparse real LiDAR points. As to the obstructed LiDAR points, we leverage the occlusion relationship among objects to ensure depth consistency between LiDAR points and their corresponding depth feature maps, thus filtering out erroneous image features. In addition, we define a virtual point loss (VP Loss) to distinguish different types of mixed points and preserve the geometric shape of objects. Furthermore, in order to promote long-term receptive field and capture finer-grained features, we propose a global point attention decoder with a box-level self-attention module and a global point attention module. Finally, comprehensive experiments show that Fusion4DAL outperforms state-of-the-art offline 3D detection methods on nuScenes and Waymo dataset.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.