A Comprehensive Survey on Big Data Analytics: Characteristics, Tools and Techniques

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Mohammad Shahnawaz, Manish Kumar
{"title":"A Comprehensive Survey on Big Data Analytics: Characteristics, Tools and Techniques","authors":"Mohammad Shahnawaz, Manish Kumar","doi":"10.1145/3718364","DOIUrl":null,"url":null,"abstract":"Modern computing devices generate vast amounts of diverse data. It means that a fast transition through various computing devices leads to big data production. Big data with high velocity, volume, and variety presents challenges like data inconsistency, scalability, real-time analysis, and tool selection. Although numerous solutions have been proposed for big data processing, they are often limited in scope and effectiveness. This survey aims to address the lack of comprehensive analysis of big data challenges in relation to machine learning (ML) and the Internet of Things (IoT) environments, particularly concerning the 7Vs of big data. It emphasizes the significance of selecting suitable tools to address each unique big data characteristic, providing a structured approach to manage these challenges effectively. The article systematically reviews big data characteristics and associated techniques, with a detailed discussion of various tools and their applications. Additionally, it analyzes existing ML methods and techniques for IoT data analytics in big data contexts. Through a systematic literature review (SLR), we examine key aspects, including core concepts, benefits, limitations, and the impact of big data on ML algorithms and IoT data analytics. We highlight groundbreaking studies addressing big data challenges to impact future research and enhance big data-driven applications.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"208 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3718364","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern computing devices generate vast amounts of diverse data. It means that a fast transition through various computing devices leads to big data production. Big data with high velocity, volume, and variety presents challenges like data inconsistency, scalability, real-time analysis, and tool selection. Although numerous solutions have been proposed for big data processing, they are often limited in scope and effectiveness. This survey aims to address the lack of comprehensive analysis of big data challenges in relation to machine learning (ML) and the Internet of Things (IoT) environments, particularly concerning the 7Vs of big data. It emphasizes the significance of selecting suitable tools to address each unique big data characteristic, providing a structured approach to manage these challenges effectively. The article systematically reviews big data characteristics and associated techniques, with a detailed discussion of various tools and their applications. Additionally, it analyzes existing ML methods and techniques for IoT data analytics in big data contexts. Through a systematic literature review (SLR), we examine key aspects, including core concepts, benefits, limitations, and the impact of big data on ML algorithms and IoT data analytics. We highlight groundbreaking studies addressing big data challenges to impact future research and enhance big data-driven applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信