{"title":"Facial Expression Analysis in Parkinson's Disease Using Machine Learning: A Review","authors":"Guilherme Camargo, Quoc Ngo, Leandro Passos, Danilo Jodas, Joao Papa, Dinesh Kumar","doi":"10.1145/3716818","DOIUrl":null,"url":null,"abstract":"Computerised facial expression analysis is performed for a range of social and commercial applications and more recently its potential in medicine such as to detect Parkinson’s Disease (PD) is emerging. This has possibilities for use in telehealth and population screening. The advancement of facial expression analysis using machine learning is relatively recent, with majority of the published work being post-2019. We have performed a systematic review of the English-based publication on the topic from 2019 to 2024 to capture the trends and identify research opportunities that will facilitate the translation of this technology for recognising Parkinson’s disease. The review shows significant advancements in the field, with facial expressions emerging as a potential biomarker for PD. Different machine learning models, from shallow to deep learning, could detect PD faces. However, the main limitation is the reliance on limited datasets. Furthermore, while significant progress has been made, model generalization must be tested before clinical applications.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"16 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3716818","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Computerised facial expression analysis is performed for a range of social and commercial applications and more recently its potential in medicine such as to detect Parkinson’s Disease (PD) is emerging. This has possibilities for use in telehealth and population screening. The advancement of facial expression analysis using machine learning is relatively recent, with majority of the published work being post-2019. We have performed a systematic review of the English-based publication on the topic from 2019 to 2024 to capture the trends and identify research opportunities that will facilitate the translation of this technology for recognising Parkinson’s disease. The review shows significant advancements in the field, with facial expressions emerging as a potential biomarker for PD. Different machine learning models, from shallow to deep learning, could detect PD faces. However, the main limitation is the reliance on limited datasets. Furthermore, while significant progress has been made, model generalization must be tested before clinical applications.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.